Skip to main content
Log in

Periodic-background solutions of Kadomtsev-Petviashvili I equation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

A systematic method to obtain exact solutions of the Zakharov-Shabat spectral problems with Jacobi elliptic function potentials is constructed by using the Baker-Akhiezer functions which appear in the study quasi-periodic solutions. As a result, periodic-background lump (PB-lump for short) solutions of the Kadomtsev-Petviashvili I (KPI) equation are constructed. Like lump solutions, PB-lump solutions are localized in the xy-plane and propagate at constant velocities. Different from lump solutions, which are rational solutions and tend to a constant amplitude when x and y are large, PB-lump solutions are composed of polynomials, elliptic functions and other special functions, and tend to the periodic background when x and y are large. What’s more, the amplitude of the crest for the PB-lump solution changes periodically as it propagates on the xy-plane. The trajectories of the PB-lumps for the KPI equation are presented on the basis of the formal series expansion technique. As an illustration, both first- and second-order PB-lumps and their exact formulas are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ablowitz, M.J., Segur, H.: On the evolution of packets of water waves. J. Fluid Mech. 92, 691–715 (1981)

    MathSciNet  MATH  Google Scholar 

  2. Gilbert, G.: The Kadomtsev-Petviashvili equations and fundamental string theory. Commun. Math. Phys. 117, 331–348 (1988)

    MathSciNet  MATH  Google Scholar 

  3. Satsuma, J.: \(N\)-soliton solution of the two-dimensional Korteweg-de Veris equation. J. Phys. Soc. Japan 40, 286–290 (1976)

    MathSciNet  MATH  Google Scholar 

  4. Freeman, N.C., Nimmo, J.J.C.: Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations. Phys. Lett. A 95, 1–3 (1983)

    MathSciNet  MATH  Google Scholar 

  5. Manakov, S.V., Zakharov, V.E., Bordag, L.A., Its, A.R., Matveev, V.B.: Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction. Phys. Lett. A 63, 205–206 (1977)

    Google Scholar 

  6. Satsuma, J., Ablowitz, M.J.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20, 1496–1503 (1983)

    MathSciNet  MATH  Google Scholar 

  7. Fokas, A.S., Ablowitz, M.J.: On the inverse scattering of the time-dependent Schrödinger equation and the associated Kadomtsev-Petviashvili (I) equation. Stud. Appl. Math. 69, 211–228 (1983)

    MathSciNet  MATH  Google Scholar 

  8. Ablowitz, M.J., Villarroel, J.: Solutions to the time dependent Schrödinger and the Kadomtsev-Petviashvili equations. Phys. Rev. Lett. 78, 570–573 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Villarroel, J., Ablowitz, M.J.: On the discrete spectrum of the nonstationary Schrödinger equation and multipole lumps of the Kadomtsev-Petviashvili I equation. Commun. Math. Phys. 207, 1–42 (1999)

    MATH  Google Scholar 

  10. Ablowitz, M.J., Chakravarty, S., Trubatch, A.D., Villarroel, J.: A novel class of solutions of the non-stationary Schrödinger and the Kadomtsev-Petviashvili I equations. Phys. Lett. A 267, 132–146 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Ma, W.X.: Lump solutions to the Kadomtsev-Petviashvili equation. Phys. Lett. A 379, 1975–1978 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Dubard, P., Matveev, V.B.: Multi-rogue waves solutions: from the NLS to the KP-I equation. Nonlinearity 26, R93–R125 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Gaillard, P.: Fredholm and Wronskian representations of solutions to the KPI equation and multi-rogue waves. J. Math. Phys. 57, 063505 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Yang, J.K., Ma, W.X.: Abundant interaction solutions of the KP equation. Nonlinear Dynam. 89, 1539–1544 (2017)

    MathSciNet  Google Scholar 

  15. Johnson, R.S., Thompson, S.: A solution of the inverse scattering problem for the Kadomtsev-Petviashvili equation by the method of separation of variables. Phys. Lett. A 66, 279–281 (2003)

    MathSciNet  Google Scholar 

  16. Fokas, A.S., Pogrebkov, A.K.: Inverse scattering transform for the KPI equation on the background of a one-line soliton. Nonlinearity 16, 771–783 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Tajiri, M., Fujimura, Y., Murakami, Y.: Resonant interactions between \(Y\)-periodic soliton and algebraic soliton: solutions to the Kadomtsev-Petviashvili equation with positive dispersion. J. Phys. Soc. Japan 61, 783–790 (1992)

    MathSciNet  Google Scholar 

  18. Liu, J.G., Zhu, W.H., He, Y.: Variable-coefficient symbolic computation approach for finding multiple rogue wave solutions of nonlinear system with variable coefficients Z. Angew. Math. Phys. 72, 154 (2021)

    MathSciNet  MATH  Google Scholar 

  19. Tian, Y., Liu, J.G.: Study on dynamical behavior of multiple lump solutions and interaction between solitons and lump wave. Nonlinear Dyn. 104, 1507–1517 (2021)

    Google Scholar 

  20. Liu, J.G., Osman, M.S.: Nonlinear dynamics for different nonautonomous wave structures solutions of a 3D variable-coefficient generalized shallow water wave equation Chinese. J. Phys. 77, 1618–1624 (2022)

    MathSciNet  Google Scholar 

  21. Liu, J.G., Zhao, H.: Multiple rogue wave solutions for the generalized (2+1)-dimensional Camassa-Holm-Kadomtsev-Petviashvili equation Chinese. J. Phys. 77, 985–991 (2022)

    MathSciNet  Google Scholar 

  22. Zhu, W.H., Liu, F.Y., Liu, J.G.: Nonlinear dynamics for different nonautonomous wave structures solutions of a (4+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation in fluid mechanics. Nonlinear Dyn. 108, 4171–4180 (2022)

    Google Scholar 

  23. Chen, J.B., Pelinovsky, D.E.: Rogue periodic waves of the focusing nonlinear Schrödinger equation. Proc. R. Soc. A. 474, 20170814 (2018)

    MATH  Google Scholar 

  24. Chen, J.B., Pelinovsky, D.E.: Rogue periodic waves of the modified KdV equation. Nonlinearity 31, 1955–1980 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Chen, J.B., Pelinovsky, D.E., White, R.E.: Rogue waves on the double-periodic background in the focusing nonlinear Schrödinger equation. Phys. Rev. E. 100, 052219 (2019)

    MathSciNet  Google Scholar 

  26. Chen, J.B., Pelinovsky, D.E.: Periodic travelling waves of the modified KdV Equation and rogue waves on the periodic background. J. Nonlinear Sci. 29, 2797–2843 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Li, R.M., Geng, X.G.: Rogue periodic waves of the sine-Gordon equation. Appl. Math. Lett. 102, 106147 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Feng, B.F., Ling, L.M., Takahashi, D.A.: Multi-breather and high-order rogue waves for the nonlinear Schrödinger equation on the elliptic function background. Stud. Appl. Math. 144, 46–101 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Guo, L.J., Chabchoub, A., He, J.S.: Higher-order rogue wave solution to the Kadomtsev-Petviashvili 1 equation. Phys. D 426, 132990 (2021)

    MathSciNet  MATH  Google Scholar 

  30. Cheng, Y., Li, Y.S.: Constraints of the \(2+1\) dimensional integrable soliton systems. J. Phys. A Math. Gen. 25, 419–431 (1991)

    MathSciNet  MATH  Google Scholar 

  31. Cao, C.W., Wu, Y.T., Geng, X.G.: Relation between the Kadomtsev-Petviashvili equation and the confocal involutive system. J. Math. Phys. 40, 3948–3970 (1999)

    MathSciNet  MATH  Google Scholar 

  32. Dubard, P., Matveev, V.B.: Multi-rogue waves solutions to the focusing NLS equation and the KP-I equation. Nat. Hazards Earth Syst. Sci. 11, 667–672 (2011)

    Google Scholar 

  33. Li, R.M., Geng, X.G.: On a vector long wave-short wave-type model. Stud. Appl. Math. 144, 164–184 (2020)

    MathSciNet  MATH  Google Scholar 

  34. Geng, X.G., Li, R.M., Xue, B.: A vector general nonlinear Schrödinger equation with \((m + n)\)-components. J. Nonlinear Sci. 30, 991–1013 (2020)

    MathSciNet  MATH  Google Scholar 

  35. Wang, X., Wei, J., Wang, L., Zhang, J.L.: Baseband modulation instability, rogue waves and state transitions in a deformed Fokas-Lenells equation. Nonlinear Dynam. 97, 343–353 (2019)

    MATH  Google Scholar 

  36. Geng, X.G., Zeng, X., Wei, J.: The application of the theory of trigonal curves to the discrete coupled nonlinear Schrödinger hierarchy. Ann. Henri Poincaré 20, 2585–2621 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Geng, X.G., Zhai, Y.Y., Xue, B.: A hierarchy of long wave-short wave type equations: almost-periodic behavior of solutions and their representation. J. Nonlinear Math. Phys. 26, 1–23 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Feng, B.F., Luo, X.D., Ablowitz, M.J., Musslimani, Z.H.: General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions. Nonlinearity 31, 5385–5409 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Deift, P., Zhou, X.: The Deift-Zhou steepest descent method to long-time asymptotics for the Sasa-Satsuma equation. Ann. Math. 2(137), 295–368 (1993)

    Google Scholar 

  40. Deift, P., Its, A., Zhou, X.: A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics. Ann. Math. 146, 148–235 (1997)

    MathSciNet  MATH  Google Scholar 

  41. Geng, X.G., Liu, H.: The nonlinear steepest descent method to long-time asymptotics of the coupled nonlinear Schrödinger equation. J. Nonlinear Sci. 28, 739–763 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Geng, X.G., Wang, K.D., Chen, M.M.: Long-time asymptotics for the spin-1 Gross-Pitaevskii equation. Commun. Math. Phys. 382, 585–611 (2021)

    MathSciNet  MATH  Google Scholar 

  43. Liu, H., Geng, X.G., Xue, B.: The Deift-Zhou steepest descent method to long-time asymptotics for the Sasa-Satsuma equation. J. Differ. Equ. 265, 5984–6008 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Gui, G.L., Liu, Y., Olver, P.J., Qu, C.Z.: Wave-breaking and peakons for a modified Camassa-Holm equation. Commun. Math. Phys. 319, 731–759 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Qu, C.Z.: Exact wave-breaking and peakons for a modified Camassa-Holm equation IMA. J. Appl. Math. 62, 283–302 (1999)

    Google Scholar 

  46. Qu, C.Z., Liu, X.C., Liu, Y.: Stability of peakons for an integrable modified Camassa-Holm equation with cubic nonlinearity. Commun. Math. Phys. 322, 967–997 (2013)

    MathSciNet  MATH  Google Scholar 

  47. Geng, X.G., Xue, B.: An extension of integrable peakon equations with cubic nonlinearity. Nonlinearity 22, 1847–1856 (2009)

    MathSciNet  MATH  Google Scholar 

  48. Geng, X.G., Xue, B.: A three-component generalization of Camassa-Holm equation with \(N\)-peakon solutions. Adv. Math. 226, 827–839 (2011)

    MathSciNet  MATH  Google Scholar 

  49. Wei, J., Geng, X.G., Zeng, X.: The Riemann theta function solutions for the hierarchy of Bogoyavlensky lattices. Trans. Amer. Math. Soc. 371, 1483–1507 (2019)

    MathSciNet  MATH  Google Scholar 

  50. Geng, X.G., Zhai, Y.Y., Dai, H.H.: Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy. Adv. Math. 263, 123–153 (2014)

    MathSciNet  MATH  Google Scholar 

  51. Shiota, T.: Characterization of Jacobian varieties in terms of soliton equations. Invent. Math. 83, 333–382 (1986)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 12001496, 11931017, 11871440).

Author information

Authors and Affiliations

Authors

Contributions

Both the authors equally contributed to writing the paper.

Corresponding author

Correspondence to Xianguo Geng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Special funcitons

Appendix A Special funcitons

Several special functions related elliptic integrals appeared in this paper. Because the denotations vary in different literatures, to avoid ambiguity, we write down the details in the following (Fig. 4).

Constants: k, \(k'\) and \(\bar{k}\).

$$\begin{aligned}&k\in (0,1)\text { is an arbitrary fixed constant},\\&k'=\sqrt{1-k^2}\text { is positive},\\&\bar{k}=\pm k'\text { can be either positive or negative}. \end{aligned}$$

Jacobi elliptic integrals: E(xk), F(xk), E(k) and K(k).

$$\begin{aligned}&E(x,k)=\int _0^x\sqrt{1-k^2\sin ^2\hat{x}}\mathrm d\hat{x},\quad E(k)=E(\tfrac{\pi }{2},k),\\&F(x,k)=\int _0^x\frac{1}{\sqrt{1-k^2\sin ^2\hat{x}}}\mathrm d\hat{x},\quad K(k)=F(\tfrac{\pi }{2},k). \end{aligned}$$

Jacobi elliptic functions: \({{\,\textrm{am}\,}}(x,k)\), \({{\,\textrm{sn}\,}}(x,k)\), \({{\,\textrm{cn}\,}}(x,k)\), \({{\,\textrm{dn}\,}}(x,k)\), Z(xk) and \(\mathcal E(x,k)\).

$$\begin{aligned}&\text {If } F(x,k)=y, \text { then } x={{\,\textrm{am}\,}}(y,k). \\&{{\,\textrm{sn}\,}}(x,k)=\sin ({{\,\textrm{am}\,}}(x,y)),\quad {{\,\textrm{cn}\,}}(x,k)=\cos ({{\,\textrm{am}\,}}(x,k)),\quad {{\,\textrm{dn}\,}}(x,k)=\sqrt{1-k^2{{\,\textrm{sn}\,}}^2(x,k)},\\&\mathcal E(x,k)=E({{\,\textrm{am}\,}}(x,k),k) ,\quad Z(x,k)=\mathcal E(x,k)-\tfrac{E(k)}{K(k)}x. \end{aligned}$$
Fig. 4
figure 4

The crests and the moving windows (red stars; left, \(u_7^+\); right, \(u_7^-\); \(k=0.9\), \(t=120\))

Short forms: \({{\,\textrm{sn}\,}}x\), \({{\,\textrm{cn}\,}}x\), \({{\,\textrm{dn}\,}}x\), E, K and Z(x).

$$\begin{aligned}&{{\,\textrm{sn}\,}}x={{\,\textrm{sn}\,}}(x,k),\quad {{\,\textrm{cn}\,}}x={{\,\textrm{cn}\,}}(x,k),\quad {{\,\textrm{dn}\,}}x={{\,\textrm{dn}\,}}(x,k),\\&E=E(k),\quad K=K(k),\quad Z(x)=Z(x,k). \end{aligned}$$

Remark

Throughout this paper, all the Jacobi elliptic integrals and functions have the same modulus k. Therefore, we always suppress the dependence on k for notation simplicity.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Geng, X. Periodic-background solutions of Kadomtsev-Petviashvili I equation. Z. Angew. Math. Phys. 74, 68 (2023). https://doi.org/10.1007/s00033-023-01961-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-01961-7

Keywords

Mathematics Subject Classification

Navigation