Skip to main content
Log in

Stability of the 2D Boussinesq equations with a velocity damping term in the strip domain

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We prove the global well-posedness for the 2D Boussinesq equations with a velocity damping term around the equilibrium state \((0,x_2)\) in the strip domain \(\mathbb R\times (0, 1)\) with Navier-type slip boundary condition. It is worth mentioning that the results of low regularity are obtained using only the energy estimate and the structure of the equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adhikari, D., Cao, C., Wu, J., Xu, X.: Small global solutions to the damped two-dimensional Boussinesq equations. J. Differ. Equs. 256(11), 3594–3613 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations, Springer, New York (2011)

    MATH  Google Scholar 

  3. Cao, C. and Wu, J.: Global Regularity for the Two-Dimensional Anisotropic Boussinesq Equations with Vertical Dissipation, Archive for Rational Mechanics and Analysis, 2013

  4. Castro, A., Cdoba, D., Lear, D.: On the asymptotic stability of stratified solutions for the 2D Boussinesq equations with a velocity damping term. Math. Models Methods Appl. Sci. 29(07), 1227–1277 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chae, D.: Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv. Math. 203(2), 497–513 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Doering, C.R., Wu, J., Zhao, K., Zheng, X.: Long time behavior of the two-dimensional Boussinesq equations without buoyancy diffusion. Physica D 376, 144–159 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dong, L.: On asymptotic stability of the 3D Boussinesq equations with a velocity damping term. J. Math. Fluid Mech. 24, 23 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dong, L. and Sun, Y.: Asymptotic stability of the 2D Boussinesq equations without thermal conduction, arXiv:2107.10077v1, 2021

  9. Hmidi, T., Keraani, S.: On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity. Adv. Differ. Equs. 12(4), 461–480 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Hou, T.Y., Li, C.: Global well-posedness of the viscous Boussinesq equations. Discr. Contin. Dyn. Syst. 12(1), 1 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lions, J.L.: Quelques Methodes de Resolution des Problemes aux Limites Nonlieaires. Dunod-Gauthier Villars, Paris, France (1969)

    MATH  Google Scholar 

  12. Lippman, G.: Relations entre les phenomenes electriques et capillaries. Ann. Chim. Phys. 5(1875), 494–549 (1875)

    Google Scholar 

  13. Majda, A.J. and Bertozzi, A.L.: Vorticity and Incompressible Flow, Cambridge University Press, 2001

  14. Majda, A.J.: Introduction to PDEs and waves for the atmosphere and ocean, vol. 9, AMS/CIMS, 2003

  15. Pedlosky, J.: Geophysical fluid dynamics, New York, 1987

  16. Sohr, H.: The Navier-Stokes Equations. An Elementary Functional Analytic Approach, Birkhuser Advanced Texts Basler Lehrbücher (2001)

    Book  MATH  Google Scholar 

  17. Tao, L., Wu, J., Zhao, K., Zheng, X.: Stability near hydrostatic equilibrium to the 2D Boussinesq equations without thermal diffusion. Arch. Ration. Mech. Anal. 237(2), 585–630 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wan, R.: Global well-posedness for the 2D Boussinesq equations with a velocity damping term. Discr. Contin. Dyn. Syst. 39(5), 2709–2730 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wu, J., Wu, Y., Xu, X.: Global small solution to the 2D MHD system with a velocity damping term. SIAM J. Math. Anal. 47(4), 2630–2656 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ren, X., Xiang, Z., Zhang, Z.: Global well-posedness for the 2D MHD equations without magnetic diffusion in a strip domain. Nonlinearity 29(2016), 1257–1291 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang, T.: An elementary proof of the global existence and uniqueness Theorem to 2-D incompressible non-resistive MHD system, arXiv:1404.3081, 2014

Download references

Acknowledgements

X. Ren is supported by NSF of China under Grants 12001195 and 11971166.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxia Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This section is devoted to give a sketch proof of global well-posedness for system (1.3) in \(\mathbb R^2\). Indeed, we have the following Proposition similar as Section 4.

Proposition 5.1

Assume that the solution \((u,\theta )\) of system (1.3) satisfies

$$\begin{aligned} \displaystyle \sup \limits _{0\le t\le T}\big (\Vert u(t)\Vert _{H^3(\mathbb R^2)}^2+\Vert \theta (t)\Vert _{H^3(\mathbb R^2)}^2\big )\le c_0^2. \end{aligned}$$

If \( c_0 \) is suitable small, then for some \(C_0>0\), it holds that

$$\begin{aligned} \displaystyle {\mathcal E}(t)+ \int \limits _0^t{\mathcal F}(s)ds\le C_0\Big (\Vert u_0\Vert ^2_{H^3(\mathbb R^2)}+\Vert \theta _0\Vert ^2_{H^3(\mathbb R^2)}\Big ) \end{aligned}$$

for any \(t\in [0,T]\).

Proof

The proof of Proposition 5.1 is based on several steps of careful energy estimates, which is similar to the proof of Proposition 4.1.

Step 1. \(L^2\) estimate of \(u, \theta \).

Due to \(\langle u,\nabla p \rangle = -\langle \mathop {\textrm{div}}\nolimits {u}, p \rangle = 0\) in \(\mathbb R^2\), we take the \(L^2\) inner product of equations (1.3)\(_1\) and (1.3)\(_2\) with u and \(\theta \), respectively, and integrate by parts to obtain

$$\begin{aligned} \frac{1}{2} \frac{d}{dt} (\Vert u\Vert _{L^2}^2+\Vert \theta \Vert _{L^2}^2)+\Vert u\Vert _{L^2}^2=0 \end{aligned}$$
(5.1)

for any \(t\in [0, T]\).

Step 2. \(\dot{H}^1\) estimate of \(u, \theta \).

We apply \(\nabla \) to equations (1.3)\(_1\) and (1.3)\(_2\) and then take the \(L^2\) inner product of the resulting equations with \(\nabla u\) and \(\nabla \theta \), respectively, to obtain

$$\begin{aligned}&\displaystyle \frac{1}{2}\frac{d}{dt}(\Vert \nabla u\Vert ^2_{L^2} + \Vert \nabla \theta \Vert _{L^2}^2)+\Vert \nabla u\Vert ^2_{L^2} = -\langle \nabla u, \nabla (u\cdot \nabla u) \rangle - \langle \nabla \theta , \nabla (u\cdot \nabla \theta ) \rangle \nonumber \\&\quad =-\langle \nabla u, \nabla u\cdot \nabla u \rangle -\langle \nabla \theta , \nabla u_1\partial _1\theta \rangle - \langle \partial _1\theta \nonumber \\&\quad \lesssim (\Vert u\Vert _{H^3}+\Vert \theta \Vert _{H^3})(\Vert u\Vert _{H^3}^2+\Vert \partial _1\theta \Vert _{H^2}^2) \le Cc_0{\mathcal F}(t), \end{aligned}$$
(5.2)

which gives the \(\dot{H}^1\) estimate of \((u,\theta )\).

Step 3. Dissipation estimate of \(\partial _1 \theta \).

Thanks to expression (1.5), we apply \(\nabla \) to equations (1.3)\(_1\) and (1.3)\(_2\) and take the \(L^2\) inner product of the resulting equations with \(-\nabla (\theta e_2)\) and \(-\nabla u_2\), respectively, to obtain

$$\begin{aligned}&\displaystyle -\frac{d}{dt} \langle \nabla u_2, \nabla \theta \rangle + \Vert \partial _1\theta \Vert _{L^2}^2- \langle \nabla (\theta e_2), \nabla u \rangle - \Vert \nabla u_2\Vert _{L^2}^2 \nonumber \\&\quad = \Big (\langle \nabla (\theta e_2), \nabla (u\cdot \nabla u) \rangle + \langle \nabla u_2, \nabla (u\cdot \nabla \theta ) \rangle \Big ) + \langle \nabla (\theta e_2), \nabla \nabla (-\Delta )^{-1}\mathop {\textrm{div}}\nolimits (u\cdot \nabla u) \rangle \end{aligned}$$
(5.3)
$$\begin{aligned}&\quad = \langle \nabla \theta , \nabla u\cdot \nabla u_2 \rangle + \langle \nabla u_2, \nabla u\cdot \nabla \theta \rangle - \langle \partial _2\theta , \partial _1 u\cdot \nabla u_1 + \partial _2 u\cdot \nabla u_2 \rangle + \int \limits _{\Omega }u\cdot \nabla (\nabla \theta \nabla u_2)\textrm{d}x\nonumber \\&\quad \lesssim \Vert \nabla \theta \Vert _{L^2}\Vert \nabla u\Vert _{L^4}^2 \lesssim \Vert \theta \Vert _{H^3}\Vert u\Vert _{H^3}^2\lesssim Cc_0{\mathcal F}(t), \end{aligned}$$
(5.4)

here we use

$$\begin{aligned} -\langle \nabla (\theta e_2), \nabla u \rangle = -\langle \partial _1\theta ,\partial _1 u_2 \rangle + \langle \partial _1\theta , \partial _2 u_1 \rangle , \end{aligned}$$

and

$$\begin{aligned} \displaystyle -\langle \nabla (\theta e_2), \nabla (-\theta e_2 + \nabla p_2) \rangle = \Vert \nabla \theta \Vert _{L^2}^2 + \langle \nabla \theta , \nabla \partial _2^2(-\Delta )^{-1}\theta \rangle = \Vert \nabla \theta \Vert _{L^2}^2 - \Vert \partial _2\theta \Vert _{L^2}^2 = \Vert \partial _1\theta \Vert _{L^2}^2. \end{aligned}$$

Then, we obtain the dissipation estimate of \(\partial _1\theta \).

Step 4. \(\dot{H}^2\) estimate of \(u,\theta \).

We apply \(\Delta \) to equations (1.3)\(_1\) and (1.3)\(_2\) and then take the \(L^2\) inner product with \(\Delta u\) and \(\Delta \theta \), respectively, to obtain

$$\begin{aligned} \displaystyle \frac{1}{2}\frac{d}{dt}(\Vert \Delta u\Vert _{L^2}^2 + \Vert \Delta \theta \Vert _{L^2}^2) + \Vert \Delta u\Vert _{L^2}^2&= - \langle \Delta u, \Delta (u\cdot \nabla u) \rangle - \langle \Delta \theta , \Delta (u\cdot \nabla \theta ) \rangle \nonumber \\&\lesssim (\Vert u\Vert _{H^3}+\Vert \theta \Vert _{H^3})(\Vert u\Vert _{H^3}^2+\Vert \partial _1\theta \Vert _{H^2}^2) \le Cc_0{\mathcal F}(t), \end{aligned}$$
(5.5)

which gives the \(\dot{H}^2\) estimate of \((u,\theta )\).

Step 5. Dissipation estimate of \(\nabla \partial _1 \theta \).

Thanks to expression (1.5), we apply \(\Delta \) to equation (1.3)\(_1\) and (1.3)\(_2\), and take the \(L^2\) inner product of the resulting equations with \(-\Delta (\theta e_2)\) and \(-\Delta u_2\), respectively, to obtain

$$\begin{aligned}&\displaystyle -\frac{d}{dt}\langle \Delta u_2, \Delta \theta \rangle + \Vert \nabla \partial _1\theta \Vert _{L^2}^2 - \langle \Delta \theta , \Delta u_2 \rangle - \Vert \Delta u_2\Vert _{L^2}^2 \nonumber \\&\quad = \Big (\langle \Delta (\theta e_2), \Delta (u\cdot \nabla u) \rangle + \langle \Delta u_2,\Delta (u\cdot \nabla \theta ) \rangle \Big ) - \langle \Delta \theta , \Delta \partial _2 (-\Delta )^{-1} \mathop {\textrm{div}}\nolimits (u\cdot \nabla u) \rangle \nonumber \\&\quad = \langle \Delta \theta , \Delta u\cdot \nabla u_2 + 2\partial _1 u\cdot \nabla \partial _1 u_2 + 2\partial _2 u\cdot \nabla \partial _2 u_2 \rangle \nonumber \\&\qquad + \langle \Delta u_2, \Delta u\cdot \nabla \theta + 2\partial _1 u\cdot \nabla \partial _1\theta + 2\partial _2 u\cdot \nabla \partial _2\theta \rangle + \int \limits _{\Omega }u\cdot \nabla (\Delta \theta \Delta u_2)\textrm{d}x\nonumber \\&\qquad - \langle \Delta \theta , \partial _1\partial _2u\cdot \nabla u_1 + \partial _1u\cdot \nabla \partial _2u_1 + \partial _2^2u\cdot \nabla u_2 + \partial _2u\cdot \nabla \partial _2u_2 \rangle \nonumber \\&\quad \lesssim \Vert \nabla ^2\theta \Vert _{L^2}\Vert \nabla ^2 u\Vert _{L^4}\Vert \nabla u\Vert _{L^4} + \Vert \nabla \theta \Vert _{L^4}\Vert \nabla ^2 u\Vert _{L^4}\Vert \nabla ^2 u\Vert _{L^2} \lesssim \Vert \theta \Vert _{H^3}\Vert u\Vert _{H^3}^2\le Cc_0{\mathcal F}(t). \end{aligned}$$
(5.6)

Here we use

$$\begin{aligned} \displaystyle - \langle \Delta \theta , \Delta u_2 \rangle = -\langle \partial _1^2\theta , \Delta u_2 \rangle - \langle \partial _1\partial _2\theta , \partial _1\partial _2u_2 \rangle + \langle \partial _1\partial _2\theta , \partial _2^2u_1 \rangle , \end{aligned}$$

and

$$\begin{aligned} \displaystyle \langle -\Delta (\theta e_2), \Delta (-\theta e_2 + \nabla p_2) \rangle = \Vert \Delta \theta \Vert _{L^2}^2 + \langle \Delta \theta , \Delta \partial _2^2(-\Delta )^{-1}\theta \rangle = \langle \Delta \theta , \partial _1^2\theta \rangle = \Vert \nabla \partial _1\theta \Vert _{L^2}^2. \end{aligned}$$

Thus we obtain the dissipation estimate of \(\nabla \partial _1\theta \).

Step 6. \(\dot{H}^3\) estimate of \(u,\theta \).

We apply \(\nabla \Delta \) to equations (1.3)\(_1\) and (1.3)\(_2\) and then take the \(L^2\) inner product of the resulting equations with \(\nabla \Delta u\) and \(\nabla \Delta \theta \) to obtain

$$\begin{aligned}&\displaystyle \frac{1}{2}\frac{d}{dt}(\Vert \nabla \Delta u\Vert _{L^2}^2 + \Vert \nabla \Delta \theta \Vert _{L^2}^2) + \Vert \nabla \Delta u\Vert _{L^2}^2 \nonumber \\&\quad = - \langle \nabla \Delta u, \nabla \Delta (u\cdot \nabla u) \rangle - \langle \nabla \Delta \theta , \nabla \Delta (u\cdot \nabla \theta ) \rangle := VI_{1} + VI_{2}\nonumber \\&\quad = - \langle \nabla \Delta u, \nabla \Delta u\cdot \nabla u \rangle - \langle \nabla \Delta u, \Delta u\cdot \nabla \nabla u \rangle - \langle \nabla \Delta u, \nabla u\cdot \nabla \Delta u \rangle \nonumber \\&\qquad - \langle \nabla \Delta u, 2\nabla \partial _1 u\cdot \nabla \partial _1 u + 2\nabla \partial _2 u\cdot \nabla \partial _2 u + 2\partial _1u\cdot \nabla \nabla \partial _1 u + 2\partial _2u\cdot \nabla \nabla \partial _2 u \rangle \nonumber \\&\qquad -\langle \nabla \Delta \theta , \nabla \Delta u\cdot \nabla \theta \rangle - \langle \nabla \Delta \theta , \Delta u\cdot \nabla \nabla \theta \rangle - \langle \nabla \Delta \theta , 2\partial _1\nabla u\cdot \nabla \partial _1\theta + 2\partial _2\nabla u\cdot \nabla \partial _2\theta \rangle \nonumber \\&\qquad -\langle \nabla \Delta \theta , 2\partial _1u\cdot \nabla \nabla \partial _1\theta + 2\partial _2u\cdot \nabla \nabla \partial _2\theta \rangle - \langle \nabla \Delta \theta , \nabla u\cdot \nabla \Delta \theta \rangle \nonumber \\&\quad \lesssim (\Vert u\Vert _{H^3} + \Vert \theta \Vert _{H^3}+ \Vert \theta \Vert _{H^3}^2+ \Vert \theta \Vert _{H^3}^3)(\Vert u\Vert _{H^3}^2 + \Vert \partial _1\theta \Vert _{H^2}^2) \le Cc_0{\mathcal F}(t), \end{aligned}$$
(5.7)

which gives the \(\dot{H}^3\) estimate of \((u,\theta )\).

Step 7. Dissipation estimate of \(\nabla ^2\partial _1 \theta \).

Thanks to expression (1.5), we apply \(\nabla \Delta \) to equations (1.3)\(_1\) and (1.3)\(_2\) and take the \(L^2\) inner product of the resulting equations with \(-\nabla \Delta (\theta e_2)\) and \(-\nabla \Delta u_2\), respectively, to obtain

$$\begin{aligned}&\displaystyle -\frac{d}{dt}\langle \nabla \Delta u_2, \nabla \Delta \theta \rangle + \Vert \Delta \partial _1\theta \Vert _{L^2}^2 - \langle \nabla \Delta \theta , \nabla \Delta u_2 \rangle - \Vert \nabla \Delta u_2\Vert _{L^2}^2 \nonumber \\&\quad = \langle \nabla \Delta (\theta e_2), \nabla \Delta (u\cdot \nabla u) \rangle + \langle \nabla \Delta u_2, \nabla \Delta (u\cdot \nabla \theta ) \rangle + \langle \nabla \Delta (\theta e_2), \nabla \Delta \nabla (-\Delta )^{-1}\mathop {\textrm{div}}\nolimits (u\cdot \nabla u) \rangle \nonumber \\&\quad = \langle \nabla \Delta \theta , u\cdot \nabla \nabla \Delta u_2 \rangle + \langle \nabla \Delta \theta , \nabla \Delta u\cdot \nabla u_2 + \nabla u\cdot \nabla \Delta u_2 + \Delta u\cdot \nabla \nabla u_2 \rangle \nonumber \\&\qquad + 2\langle \nabla \Delta \theta , \nabla \partial _1u\cdot \nabla \partial _1u_2 + \nabla \partial _2u\cdot \nabla \partial _2u_2 + \partial _1u\cdot \nabla \nabla \partial _1u_2 + \partial _2u\cdot \nabla \nabla \partial _2u_2 \rangle \nonumber \\&\qquad -\langle \nabla \Delta \theta , \nabla \partial _1\partial _2 u\cdot \nabla u_1 + \nabla \partial _1u\cdot \nabla \partial _2u_1 + \nabla \partial _2^2u\cdot \nabla u_2 + \nabla \partial _2u\cdot \nabla \partial _2u_2 \rangle \nonumber \\&\qquad - \langle \nabla \Delta \theta , \partial _1\partial _2 u\cdot \nabla \nabla u_1 + \partial _1u\cdot \nabla \nabla \partial _2u_1 + \partial _2^2u\cdot \nabla \nabla u_2 + \partial _2u\cdot \nabla \nabla \partial _2u_2 \rangle \nonumber \\&\quad \lesssim (\Vert u\Vert _{H^3} + \Vert \theta \Vert _{H^3}+ \Vert \theta \Vert _{H^3}^2+ \Vert \theta \Vert _{H^3}^3)(\Vert u\Vert _{H^3}^2 + \Vert \partial _1\theta \Vert _{H^2}^2) \le Cc_0{\mathcal F}(t), \end{aligned}$$
(5.8)

Here we use

$$\begin{aligned} \displaystyle -\langle \nabla \Delta \theta , \nabla \Delta u_2 \rangle = -\langle \partial _1\Delta \theta , \partial _1\Delta u_2 \rangle - \langle \partial _2\partial _1^2\theta , \partial _2\Delta u_2 \rangle + \langle \partial _1\partial _2^2\theta , \partial _1^2\partial _2u_1 \rangle + \langle \partial _1\partial _2^2\theta , \partial _2^3u_1 \rangle , \end{aligned}$$

and

$$\begin{aligned} \displaystyle \langle -\nabla \Delta (\theta e_2), \nabla \Delta (-\theta e_2 - \nabla p_2) \rangle = \Vert \nabla \Delta \theta \Vert _{L^2}^2 - \langle \nabla \Delta \theta , \nabla \partial _2^2\theta \rangle = \langle \nabla \Delta \theta , \nabla \partial _1^2\theta \rangle = \Vert \Delta \partial _1\theta \Vert _{L^2}^2. \end{aligned}$$

Thus, we obtain the dissipation estimate of \(\nabla ^2\partial _1\theta \).

Step 8. Closing of the a priori estimates.

With the estimates in step 1–7, we can take a similar procedure as that of Proposition 4.1 to conclude that

$$\begin{aligned} \displaystyle {\mathcal E}(t) + \int \limits _{0}^{t} {\mathcal F}(s)\textrm{d}s \le C_0(\Vert u_0\Vert _{H^3}^2 + \Vert \theta _0\Vert _{H^3}^2) \end{aligned}$$

for some positive constant \(C_0\) provided that \(c_0\) is suitable small. This completes the proof of Proposition 5.1. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Z., Ren, X. Stability of the 2D Boussinesq equations with a velocity damping term in the strip domain. Z. Angew. Math. Phys. 74, 55 (2023). https://doi.org/10.1007/s00033-023-01951-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-01951-9

Keywords

Mathematics Subject Classification

Navigation