Skip to main content
Log in

Quasi-periodically forced and reversible vibrations of beam equations with Liouvillean frequencies

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The present paper is concerned with the existence of response solutions of quasi-periodic type for a class of quasi-periodically forced, non-Hamiltonian but reversible nonlinear beam equations. We do not suppose the basic frequency \(\omega \in {\mathbb {R}}^2\) of the forcing term is Diophantine or Brjuno, and it might be Liouvillean, which is weaker than the Diophantine or Brjuno frequency. The proof is based on an improved Kolmogorov–Arnold–Moser (KAM) theorem for infinite-dimensional reversible systems with non-reducible normal form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Notice that the parameters L and r depend on the step numbers \(\nu \) of the KAM iteration, which is obvious from the definition of \(Q_{{\mathfrak {n}}+1}\) in (5.15).

References

  1. Avila, A., Fayad, B., Krikorian, R.: A KAM scheme for \({\rm SL}(2, R)\) cocycles with Liouvillean frequencies. Geom. Funct. Anal. 21(5), 1001–1019 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baldi, P., Berti, M., Haus, E., Montalto, R.: Time quasi-periodic gravity water waves in finite depth. Invent. Math. 214(2), 739–911 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baldi, P., Berti, M., Montalto, R.: KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Math. Ann. 359(1–2), 471–536 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bambusi, D.: On long time stability in Hamiltonian perturbations of non-resonant linear PDEs. Nonlinearity 12(4), 823–850 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bambusi, D., Graffi, S.: Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods. Commun. Math. Phys. 219(2), 465–480 (2001)

    Article  MATH  Google Scholar 

  6. Berti, M.: KAM theory for partial differential equations. Anal. Theory Appl. 35(3), 235–267 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourgain, J.: Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. Math. (2) 148(2), 363–439 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chang, N., Geng, J., Lou, Z.: Bounded non-response solutions with Liouvillean forced frequencies for nonlinear wave equations. J. Dyn. Differ. Equ. (5) (2020)

  9. Chierchia, L., You, J.: KAM tori for 1D nonlinear wave equations with periodic boundary conditions. Commun. Math. Phys. 211(2), 497–525 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eliasson, L., Grébert, B., Kuksin, S.: KAM for the nonlinear beam equation. Geom. Funct. Anal. 26(6), 1588–1715 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eliasson, L., Kuksin, S.: KAM for the nonlinear Schrödinger equation. Ann. Math. (2) 172(1), 371–435 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ge, C., Geng, J., and Lou,Z.: KAM theory for the reversible perturbations of 2d linear beam equations. Math. Z. (1–2) (2020)

  13. Ge, C., Geng, J., and Lou, Z.: KAM tori for completely resonant hamiltonian derivative beam equations on \(T^2\). J. Dyn. Differ. Equ. (1–2) (2020)

  14. Geng, J.: Invariant tori of full dimension for a nonlinear Schrödinger equation. J. Differ. Equ. 252(1), 1–34 (2012)

    Article  MATH  Google Scholar 

  15. Geng, J., You, J.: KAM tori of Hamiltonian perturbations of 1D linear beam equations. J. Math. Anal. Appl. 277(1), 104–121 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Geng, J., You, J.: A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces. Commun. Math. Phys. 262(2), 343–372 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Geng, J., You, J.: KAM tori for higher dimensional beam equations with constant potentials. Nonlinearity 19(10), 2405–2423 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hou, X., You, J.: Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems. Invent. Math. 190(1), 209–260 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kappeler, T., Pöschel, J.: KdV & KAM. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  20. Krikorian, R., Wang, J., You, J., Zhou, Q.: Linearization of quasiperiodically forced circle flows beyond Brjuno condition. Commun. Math. Phys. 358(1), 81–100 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kuksin, S.: Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum. Funktsional. Anal. i Prilozhen. 21(3):22–37 (1987)

  22. Kuksin, S., Pöschel, J.: Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation. Ann. Math. (2) 143(1), 149–179 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liang, Z., Yu, Z., Wang, M.: The Cantor manifold theorem with symmetry and applications to PDEs. Taiwan. J. Math. 18(5), 1481–1509 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Lou, Z., Geng, J.: Quasi-periodic response solutions in forced reversible systems with Liouvillean frequencies. J. Differ. Equ. 263(7), 3894–3927 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Niu, H., Geng, J.: Almost periodic solutions for a class of higher-dimensional beam equations. Nonlinearity 20(11), 2499–2517 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pöschel, J.: On elliptic lower-dimensional tori in Hamiltonian systems. Math. Z. 202(4), 559–608 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pöschel, J.: A KAM-theorem for some nonlinear partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23(1), 119–148 (1996)

    MathSciNet  MATH  Google Scholar 

  28. Procesi, M.: A normal form for beam and non-local nonlinear Schrödinger equations. J. Phys. A, 43(43):434028 (2010)

  29. Procesi, M., Xu, X.: Quasi-Töplitz functions in KAM theorem. SIAM J. Math. Anal. 45(4), 2148–2181 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, J., You, J.: Boundedness of solutions for non-linear quasi-periodic differential equations with Liouvillean frequency. J. Differ. Equ. 261(2), 1068–1098 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, J., You, J., Zhou, Q.: Response solutions for quasi-periodically forced harmonic oscillators. Trans. Am. Math. Soc. 369(6), 4251–4274 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wayne, C.: Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Commun. Math. Phys. 127(3), 479–528 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu, X., Geng, J.: KAM tori for higher dimensional beam equation with a fixed constant potential. Sci. China Ser. A 52(9), 2007–2018 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xu, X., You, J., Zhou, Q.: Quasi-periodic solutions of NLS with Liouvillean frequency. arXiv:1707.04048 (2017). To appear in Analysis & PDE

Download references

Acknowledgements

The authors wish to thank Prof. Jiansheng Geng for valuable comments, suggestions and discussions. The authors are very grateful to the referee for his/her invaluable suggestions. The research was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 11901291) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20190395).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaowei Lou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Proofs of some technical lemmas

Appendix. Proofs of some technical lemmas

1.1 Proof of Lemma 5.2

Proof

  1. (1).

    In fact, by Lemma 2.1, one has \(Q_{{\mathfrak {n}}+1}\ge Q_{{\mathfrak {n}}}^{{\mathcal {A}}}.\) \({\tilde{r}}_{m}\le {\tilde{r}}_{0}=2r_{+},\)

    $$\begin{aligned} (r-{\tilde{r}}_{m})^3\ge (r-2r_{+})^3\ge (\frac{r_{0}}{8Q_{{\mathfrak {n}}}^{4}})^3, \end{aligned}$$

    and

    $$\begin{aligned} \begin{aligned}&\frac{180{\tilde{r}}_{m}Q_{{\mathfrak {n}}+1}\zeta }{(r-{\tilde{r}}_{m})^3} \le 180{\tilde{r}}_{m}Q_{{\mathfrak {n}}+1}\zeta (\frac{8Q_{{\mathfrak {n}}}^{4}}{r_0})^3 \le 180\frac{2r_0}{4Q_{{\mathfrak {n}}+1}^{4}}Q_{{\mathfrak {n}}+1}2\varepsilon _{0}^{\frac{1}{2}} \frac{512Q_{{\mathfrak {n}}}^{12}}{r_{0}^{3}}\\&\quad =C\frac{Q_{{\mathfrak {n}}}^{12}\varepsilon _{0}^{\frac{1}{2}}}{Q_{{\mathfrak {n}}+1}^{3}r_{0}^{2}} \le 1. \end{aligned} \end{aligned}$$
    (6.1)

    Thus, we have our conclusion \(180{\tilde{r}}_{m}Q_{{\mathfrak {n}}+1}\zeta \le (r-{\tilde{r}}_{m})^3\).

  2. (2).

    From Lemma 2.1, we have \(Q_{{\mathfrak {n}}+1}\ge Q_{{\mathfrak {n}}}^{{\mathcal {A}}}\) and \(\ln Q_{{\mathfrak {n}}+1}\le Q^U_{\mathfrak {n}}.\) Using these and (5.20), we have

    $$\begin{aligned} \frac{256}{(r-{\tilde{r}}_m)^2}\textrm{e}^{-\frac{r-{\tilde{r}}_m}{2}Q_{{\mathfrak {n}}+1}}\zeta \le 256(\frac{8Q_{{\mathfrak {n}}}^{4}}{r_0})^{2} \textrm{e}^{-\frac{r-{\tilde{r}}_m}{2}Q_{{\mathfrak {n}}+1}}2\varepsilon _{0}^{\frac{1}{2}},\,\, \frac{256\cdot 64\cdot 2}{r_{0}^{2}}\varepsilon _{0}^{\frac{1}{2}}\le \frac{1}{2},\\ \begin{aligned} Q_{{\mathfrak {n}}}^{8}\textrm{e}^{-(r-{\tilde{r}}_m)Q_{{\mathfrak {n}}+1}}&\le \textrm{e}^{-\frac{r_0}{8Q_{{\mathfrak {n}}}^{4}}Q_{{\mathfrak {n}}+1}}Q_{{\mathfrak {n}}}^{8} \le \textrm{e}^{-\frac{Q_{{\mathfrak {n}}+1}}{Q_{{\mathfrak {n}}}^{5}}}Q_{{\mathfrak {n}}}^{8}\\&\quad \le \textrm{e}^{-\frac{Q_{{\mathfrak {n}}+1}^{\frac{1}{2}}\ln Q_{{\mathfrak {n}}+1}}{Q_{{\mathfrak {n}}}^{5}}}\textrm{e}^{Q_{{\mathfrak {n}}}\ln Q_{{\mathfrak {n}}+1}} \le \textrm{e}^{-\ln Q_{{\mathfrak {n}}+1}(Q_{{\mathfrak {n}}}^{\frac{{\mathcal {A}}}{2}-5}-Q_{{\mathfrak {n}}})}\\&\quad \le \textrm{e}^{-(\ln Q_{{\mathfrak {n}}+1})Q_{{\mathfrak {n}}}^{\frac{{\mathcal {A}}}{2}-5-1}} \le Q_{{\mathfrak {n}}+1}^{-({\mathfrak {n}}+2-n_{0})2^{{\mathfrak {n}}+2-n_{0}}c\tau U}\\&\quad = \left( \frac{\varepsilon }{\varepsilon _{-}}\right) ^{{\mathfrak {n}}+2-n_{0}} \le \varepsilon \le \tilde{\zeta }_m,\\ \end{aligned} \end{aligned}$$

    thus

    $$\begin{aligned} \frac{256}{(r-{\tilde{r}}_m)^2}e^{-\frac{r-{\tilde{r}}_m}{2}Q_{{\mathfrak {n}}+1}}\zeta \le \frac{1}{2}\tilde{\zeta }_m^{\frac{1}{2}}. \end{aligned}$$
  3. (3).

    We prove \({\tilde{K}}_m\le K^{(m)}\) and \({\tilde{K}}_m\le K.\) We first prove \({\tilde{K}}_m\le K^{(m)}.\) Owing to \(\frac{2^{{\mathfrak {n}}+1-n_{0}}c\tau U}{60\tau }\ge 5\) and

    $$\begin{aligned} m\le L-1=1+\left\lfloor \frac{2^{{\mathfrak {n}}+1-n_{0}}c\tau U \ln Q_{{\mathfrak {n}}+1}}{60\tau \ln \frac{5}{2}}\right\rfloor , \end{aligned}$$

    then we have the inequalities

    $$\begin{aligned} \begin{aligned} {\tilde{K}}_m&\le \frac{2}{\tilde{\sigma }_m}\ln \frac{1}{\tilde{\varepsilon }_{m-1}} \le \frac{5\cdot 2^{m+2}\cdot 4Q_{{\mathfrak {n}}+1}^{4}}{r_0}\ln \frac{1}{\varepsilon ^{(\frac{5}{4})^{m-1}}}\\&\quad \le \frac{160(\frac{5}{2})^{m-1}Q_{{\mathfrak {n}}+1}^{4}}{r_0}\ln \frac{1}{\varepsilon } \le \frac{160(\frac{5}{2})^{\lfloor \frac{2^{{\mathfrak {n}}+1-n_{0}}c\tau U \ln Q_{{\mathfrak {n}}+1}}{60\tau \ln \frac{5}{2}}\rfloor }Q_{{\mathfrak {n}}+1}^{4}}{r_0}\ln \frac{1}{\varepsilon }\\&\quad \le \frac{160Q_{{\mathfrak {n}}+1} ^{\frac{2^{{\mathfrak {n}}+1-n_{0}}c\tau U}{60\tau }+4}}{r_0}\ln \frac{1}{\varepsilon } \le Q_{{\mathfrak {n}}+1}^{\frac{2^{{\mathfrak {n}}+1-n_{0}}c\tau U}{60\tau }}\ln \frac{1}{\varepsilon }\\&\quad \le \left( \frac{1}{\varepsilon }\right) ^{\frac{1}{60\tau }}\left( \frac{1}{\varepsilon }\right) ^{\frac{1}{60\tau }} = \left( \frac{1}{\varepsilon }\right) ^{\frac{1}{30\tau }}, \end{aligned} \end{aligned}$$
    (6.2)

    and

    $$\begin{aligned}{} & {} 2^{L+2}\le \left( \frac{5}{2}\right) ^{\lfloor \frac{2^{{\mathfrak {n}}+1-n_{0}}c\tau U \ln Q_{{\mathfrak {n}}+1}}{60\tau \ln \frac{5}{2}}\rfloor }\le Q_{{\mathfrak {n}}+1}^{\frac{2^{{\mathfrak {n}}+1-n_{0}}c\tau U}{60\tau }},\\{} & {} \frac{1}{2^{m+2}}\ge \frac{1}{2^{L+2}}\ge Q_{{\mathfrak {n}}+1}^{-\frac{2^{{\mathfrak {n}}+1-n_{0}}c\tau U}{60\tau }}\ge \varepsilon ^{\frac{1}{120\tau }}. \end{aligned}$$

    We conclude from all these inequalities that

    $$\begin{aligned} \begin{aligned}&\frac{K^{(m)}}{{\tilde{K}}_m} \ge \left( \frac{\gamma ^{2}\tilde{\sigma }_m^{2}}{2C_0\tilde{\zeta }_{m}^{\frac{1}{2}}}\right) ^{\frac{1}{3\tau }} \cdot \varepsilon ^{\frac{1}{30\tau }} \ge \left( \frac{\gamma _{0}^{2}r_{0}^{2}}{(20\cdot 2^{m+2}Q_{{\mathfrak {n}}+1}^{4})^{2}\cdot 2C_{0}\cdot 2\varepsilon ^{\frac{1}{2}}}\right) ^{\frac{1}{3\tau }}\cdot \varepsilon ^{\frac{1}{30\tau }}\\&\quad \ge \left( \frac{\gamma _{0}^{2}r_{0}^{2}}{C_{0}Q_{{\mathfrak {n}}+1}^{8}}\right) ^{\frac{1}{3\tau }} \cdot \left( \frac{1}{\varepsilon }\right) ^{\frac{1}{6\tau }-\frac{1}{30\tau }-\frac{1}{120\tau }} \ge \left( \frac{\gamma _{0}^{2}r_{0}^{2}}{C_{0}Q_{{\mathfrak {n}}+1}^{8}}\right) ^{\frac{1}{3\tau }}\cdot Q_{{\mathfrak {n}}+1}^{2^{{\mathfrak {n}}+2-n_{0}} c\tau U\left( \frac{1}{10\tau }-\frac{1}{30\tau }-\frac{1}{120\tau }\right) }\\&\quad \ge \left( \frac{\gamma _{0}^{2}r_{0}^{2}}{C_{0}Q_{{\mathfrak {n}}+1}^{8}}\right) ^{\frac{1}{3\tau }}\cdot Q_{{\mathfrak {n}}+1}^{2^{{\mathfrak {n}}+2-n_{0}}8} \ge 1, \end{aligned} \end{aligned}$$

    i.e., \({\tilde{K}}_m\le K^{(m)}.\) In (6.2), we have obtained \({\tilde{K}}_m\le (\frac{1}{\varepsilon })^{\frac{1}{30\tau }}\). This together with \(K\ge \left( \frac{\gamma ^{2}}{2\varepsilon ^{\frac{1}{2}}}\right) ^{\frac{1}{10\tau }}\) implies that

    $$\begin{aligned} \begin{aligned} \frac{{\tilde{K}}_m}{K} \le \frac{\left( \frac{1}{\varepsilon }\right) ^{\frac{1}{30\tau }}}{\left( \frac{\gamma ^{2}}{2\varepsilon ^{\frac{1}{2}}}\right) ^{\frac{1}{10\tau }}} \le \left( \frac{1}{\varepsilon }\right) ^{\frac{1}{30\tau }} \left( \frac{2\varepsilon ^{\frac{1}{2}}}{\gamma ^{2}}\right) ^{\frac{1}{10\tau }} \le \left( \frac{2\varepsilon ^{\frac{1}{6}}}{\gamma ^{2}}\right) ^{\frac{1}{10\tau }} \le 1, \end{aligned} \end{aligned}$$
    (6.3)

    i.e., \({\tilde{K}}_m\le K.\) Thus, we complete the proof of \({\tilde{K}}_m\le \min \{K, K^{(m)}\}.\)

\(\square \)

1.2 Some basic inequalities

Lemma 6.1

([4]) Let \(g: {\mathcal {I}}\rightarrow {\mathbb {R}}\) be \(b+3\) times differentiable, and assume that (1) \(\forall \sigma \in {\mathcal {I}}\) there exists \(s\le b+2\) such that \(g^{(s)}(\sigma )>B\). (2) There exists A such that \(|g^{(s)}(\sigma )|\le A\) for \(\forall \sigma \in {\mathcal {I}}\) and \(\forall s\) with \(1\le s\le b+3\). Define \( {\mathcal {I}}_h\equiv \{\sigma \in {\mathcal {I}}: |g(\sigma )|\le h\},\) then

$$\begin{aligned} \frac{\textrm{meas}({\mathcal {I}}_h)}{\textrm{meas}({\mathcal {I}})}\le \frac{A}{B}2\left( 2+3+\cdots +(b+3)+ 2B^{-1}\right) h^{\frac{1}{b+3}}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, Z., Chang, N. Quasi-periodically forced and reversible vibrations of beam equations with Liouvillean frequencies. Z. Angew. Math. Phys. 74, 52 (2023). https://doi.org/10.1007/s00033-023-01948-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-01948-4

Keywords

Mathematics Subject Classification

Navigation