Skip to main content
Log in

The Rayleigh–Bénard problem for a fluid with pressure- and temperature-dependent material properties

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The Rayleigh–Bénard problem in viscous fluids is one of the most intensely studied problems in fluid mechanics. The literature is rich in studies concerning Navier–Stokes fluids with constant material properties and fluids with variable viscosity and/or thermal conduction, whereas it lacks in results concerning the more realistic case in which all the material properties of the fluid are variable. In this paper, we re-examine the classical problem of the onset of thermal-convection for fluids whose material properties depend on the pressure and temperature by studying the linear stability of the conduction solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bénard, H.: Les tourbillons cellulaires dans une nappe liquide. Revue Générale des Sciences Pures et Appliquées 11(1261–1271), 1309–1328 (1900)

    Google Scholar 

  2. Boussinesq, J.: Theorie Analytique de la Chaleur. Gauthier-Villars, Paris (1903)

  3. Capone, F., Gentile, M.: Nonlinear stability analysis of convection for fluids with exponentially temperature-dependent viscosity. Acta Mech. 107, 53–64 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Capone, F., Gentile, M.: Nonlinear stability analysis of the Bénard problem for fluids with a convex nonincreasing temperature depending viscosity. Continuum Mech. Thermodyn. 7, 297–309 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability, International series of monographs on physics. Clarendon Press, New York (1961)

    Google Scholar 

  6. Davis, S.H.: On the principle of exchange of stabilities. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 310(1502), 341–358 (1969)

    MathSciNet  MATH  Google Scholar 

  7. Dincer, I., Zamfirescu, C.: Appendix B Thermophysical Properties of Water, pp. 457–459. Wiley, New York (2015)

    Google Scholar 

  8. Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun Guide. Pafnuty Publications, Oxford (2014)

    Google Scholar 

  9. Flavin, J.N., Rionero, S.: The Bénard problem for nonlinear heat conduction: unconditional stability. Q. J. Mech. Appl. Math. 52(3), 441–452 (1999)

    Article  MATH  Google Scholar 

  10. Galdi, G.P., Straughan, B.: Exchange of stabilities, symmetry, and nonlinear stability. Arch. Ration. Mech. Anal. 89, 211–228 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Génieys, S., Massot, M.: From Navier–Stokes equations to the Oberbeck–Boussinesq approximation: a unified approach (2012)

  12. Grandi, D., Passerini, A.: On the Oberbeck–Boussinesq approximation for gases. Int. J. Non-Linear Mech. 134, 103738 (2021)

    Article  Google Scholar 

  13. Habchi, W., Vergne, P., Bair, S., Andersson, O., Eyheramendy, D., Morales-Espejel, G.E.: Influence of pressure and temperature dependence of thermal properties of a lubricant on the behaviour of circular tehd contacts. Tribol. Int. 43(10), 1842–1850 (2010). (36th Leeds-Lyon Symposium Special Issue: Multi-facets of Tribology)

    Article  Google Scholar 

  14. Kodaira, K.: On ordinary differential equations of any even order and the corresponding eigenfunction expansions. Am. J. Math. 72(3), 502–544 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  15. Malkovsky, V.I., Magri, F.: Thermal convection of temperature-dependent viscous fluids within three-dimensional faulted geothermal systems: estimation from linear and numerical analyses. Water Resour. Res. 52(4), 2855–2867 (2016)

    Article  Google Scholar 

  16. Mulone, G., Rionero, S., Straughan, B.: Convection with temperature dependent viscosity and thermal conductivity: linear energy stability theory. Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche di Napoli 61, 13–28 (1994)

    MATH  Google Scholar 

  17. Mutabazi, I., Westfreid, J.E., Guyon, E. (eds.): Dynamics of Spatio-temporal Cellular Structures, Springer Tracts in Modern Physics, vol. 207. Springer, New York (2006)

    Google Scholar 

  18. Oberbeck, A.: Über die wärmeleitung der flüssigkeiten bei berücksichtigung der strömungen infolge von temperaturdifferenzen. Ann. Phys. 243(6), 271–292 (1879)

    Article  MATH  Google Scholar 

  19. Oberbeck, A.: Über die bewegungserscheinungen der atmosphäre, Sitz-Ber. Akad. Wiss., Berlin (1888), 383–395 and 1129–1138

  20. Rajagopal, K.R., Saccomandi, G., Vergori, L.: On the Oberbeck–Boussinesq approximation for fluids with pressure dependent viscosities. Nonlinear Anal. Real World Appl. 10(2), 1139–1150 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rajagopal, K.R., Saccomandi, G., Vergori, L.: Stability analysis of the Rayleigh–Bénard convection for a fluid with temperature and pressure dependent viscosity. Zeitschrift Angewandte Mathematik und Physik 60(4), 739–755 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rajagopal, K.R., Saccomandi, G., Vergori, L.: On the approximation of isochoric motions of fluids under different flow conditions. Proc. R. Soc. A Math. Phys. Eng. Sci. 471(2180), 20150159 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Rajagopal, K.R., Ruzicka, M., Srinivasa, A.R.: On the Oberbeck–Boussinesq approximation. Math. Models Methods Appl. Sci. 06(08), 1157–1167 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rayleigh, Lord: On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Lond. Edinb. Dublin Philos. Mag. J. Sci. 32(192), 529–546 (1916)

    Article  MATH  Google Scholar 

  25. Vaidya, A., Wulandana, R.: Non-linear stability for convection with quadratic temperature dependent viscosity. Math. Methods Appl. Sci. 29(13), 1555–1561 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Weideman, J.A., Reddy, S.C.: A matlab differentiation matrix suite. ACM Trans. Math. Softw. (TOMS) 26(4), 465–519 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research have been partially supported by GNFM of Italian INDAM and by the PRIN 2017 research project (Grant No. 2017KL4EF3) ‘Mathematics of active materials: from mechanobiology to smart devices’. The Authors thank the anonymous referees for their constructive comments and suggestions. Thanks to them we have been able to improve significantly our results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Vergori.

Additional information

Dedicated to the memory of Professor Salvatore Rionero.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Depth-dependent material parameters for the mineral oil Shell T9

Appendix A: Depth-dependent material parameters for the mineral oil Shell T9

Taken \((p_\textrm{ref},\theta _\textrm{ref})=(1\) atm, 25 \(^\circ \)C) as reference state, we non-dimensionalize (66)–(70) by using (7) and find that the depth-dependent coefficients in (39) for the mineral oil Shell T9 are as follows

$$\begin{aligned} \hat{\alpha }(z)= & {} \dfrac{1}{\alpha _\textrm{ref}}\Bigg \{\dfrac{a_V}{1+a_V\theta _\textrm{ref}\big (\bar{\theta }(z)-1\big )}\nonumber \\{} & {} \quad -\dfrac{\rho _\textrm{ref}gd\beta _K}{K_{00}}\exp \big (\beta _K\theta _\textrm{ref}\bar{\theta }(z)\big )p_h(z)\left[ 1+\dfrac{K'_0}{K_{00}}\rho _\textrm{ref}gd \exp \big (\beta _K\theta _\textrm{ref}\bar{\theta }(z)\big )p_h(z)\right] ^{-1}\Bigg \}, \end{aligned}$$
(73a)
$$\begin{aligned} \hat{\mu }(z)= & {} \dfrac{\mu _\infty }{\mu _\textrm{ref}}\exp \left[ \dfrac{B_F\varphi _\infty }{\bar{\theta }(z)\mathcal {F}^g(z)-\varphi _\infty }\right] , \end{aligned}$$
(73b)
$$\begin{aligned} \hat{k}(z)= & {} \dfrac{B+C\left\{ \mathcal {F}(z)\left[ 1+A\bar{\theta }(z)\mathcal {F}^3(z)\right] \right\} ^{-s}}{k_\textrm{ref}}, \end{aligned}$$
(73c)
$$\begin{aligned} \hat{c}_p(z)= & {} \dfrac{C_0\mathcal {F}^{4}(z)+m\bar{\theta }(z)}{{c_p}_\textrm{ref}\rho _R \mathcal {F}^3(z)}, \end{aligned}$$
(73d)
$$\begin{aligned} \hat{\kappa }(z)= & {} -\dfrac{Cs}{k_\textrm{ref}}\left\{ \mathcal {F}(z)\left[ 1+A{\bar{\theta }}(z)\mathcal {F}^3(z)\right] \right\} ^{-s-1}\nonumber \\{} & {} \quad \times \left\{ \alpha _\textrm{ref}\theta _\textrm{ref}\mathcal {F}(z)\hat{\alpha }(z)\left[ 1+4A{\bar{\theta }}(z)\mathcal {F}^3(z)\right] +A\mathcal {F}^4(z)\right\} \bar{\theta }'(z), \end{aligned}$$
(73e)

where

$$\begin{aligned} \mathcal {F}(z)=\dfrac{1+a_V\theta _\textrm{ref}\big (\bar{\theta }(z)-1\big )}{\left\{ 1+\dfrac{K'_0}{K_{00}}\rho _\textrm{ref}gd \exp \big [\beta _K\theta _\textrm{ref}\bar{\theta }(z)\big ]p_h(z)\right\} ^{1/K'_0}}, \end{aligned}$$
(73f)

\(\rho _\textrm{ref}=872.059\) kg/m\(^3\), \(\alpha _\textrm{ref}=0.77\cdot 10^{-3}\) K\(^{-1}\), \(\mu _\textrm{ref}=0.017\) Pa s, \(k_\textrm{ref}=0.1114\) W m\(^{-1}\) K\(^{-1}\) and \({c_p}_{\textrm{ref}}=1.789\) kJ kg\(^{-1}\) K\(^{-1}\).

For the mineral oil Shell T9, from (51c) and (68) the reduced response function for the viscosity (51i) is found to be

$$\begin{aligned} \tilde{\mu }=\dfrac{\mu _\infty }{\mu _\textrm{ref}}\exp \left[ \dfrac{B_F\varphi _\infty }{h(z)\mathcal {H}^g(z)-\varphi _\infty }\right] , \end{aligned}$$
(74a)

with

$$\begin{aligned} h(z)=1+(\delta -1)(1-z) \quad \text {and} \quad \mathcal {H}=\dfrac{1+a_V\theta _\textrm{ref}[h(z)-1]}{\left\{ 1+\dfrac{K'_0}{K_{00}}p_\textrm{ref} \exp \big [\beta _K\theta _\textrm{ref}h(z)\big ]\right\} ^{1/K'_0}}. \end{aligned}$$
(74b)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fusi, L., Vergori, L. The Rayleigh–Bénard problem for a fluid with pressure- and temperature-dependent material properties. Z. Angew. Math. Phys. 74, 8 (2023). https://doi.org/10.1007/s00033-022-01894-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01894-7

Navigation