Skip to main content
Log in

Rigorous derivation of the asymptotic model describing a steady thermomicropolar fluid flow through a curvilinear channel

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider the steady flow of a thermomicropolar fluid through a thin curvilinear channel. The flow is governed by the prescribed pressure drop between the channel’s ends. The heat exchange between the fluid inside the channel and the exterior medium is allowed through the upper curved wall, while the lower wall is insulated. Using asymptotic analysis with respect to the domain’s thickness, we compute the asymptotic approximation of the solution. The derived solution is obtained in explicit form, allowing us to clearly observe the effects of the curvature of the domain as well as the micropolarity of the fluid. A boundary layer analysis is provided for the microrotation. The proposed effective model is rigorously justified via error estimates in suitable norms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdullah, I., Amin, N.: A micropolar fluid model of blood flow through a tapered artery with a stenosis. Math. Methods Appl. Sci. 33(16), 1910–1923 (2010)

    Article  MathSciNet  Google Scholar 

  2. Ahmed, A., Nadeem, S.: Effects of magnetohydrodynamics and hybrid nanoparticles on a micropolar fluid with 6-types of stenosis. Results Phys. 7, 4130–4139 (2017)

    Article  Google Scholar 

  3. Beneš, M., Pažanin, I.: Effective flow of incompressible micropolar fluid through a system of thin pipes. Acta Appl. Math. 143, 29–43 (2016)

    Article  MathSciNet  Google Scholar 

  4. Beneš, M., Pažanin, I.: Rigorous derivation of the effective model describing a nonisothermal fluid flow in a vertical pipe filled with porous medium. Contin. Mech. Thermodyn. 30, 301–317 (2018)

    Article  MathSciNet  Google Scholar 

  5. Cheng, C.Y.: Nonsimilar solutions for double-diffusion boundary layers on a sphere in micropolar fluids with constant wall heat and mass fluxes. Appl. Math. Model. 34(7), 1892–1900 (2010)

    Article  MathSciNet  Google Scholar 

  6. Dupuy, D., Panasenko, G.P., Stavre, R.: Asymptotic methods for micropolar fluids in a tube structure. Math. Models Methods Appl. Sci. 14(5), 735–758 (2004)

    Article  MathSciNet  Google Scholar 

  7. Dupuy, D., Panasenko, G.P., Stavre, R.: Asymptotic solution for a micropolar flow in a curvilinear channel. Z. Angew. Math. Mech. 88(10), 793–807 (2008)

    Article  MathSciNet  Google Scholar 

  8. Eringen, A.C.: Microcontinuum Field Theories II: Fluent Media. Springer, New York (2001)

    MATH  Google Scholar 

  9. Eringen, A.C.: Theory of micropolar fluids. J. Appl. Math. Mech. (1966). https://doi.org/10.1512/iumj.1967.16.16001

  10. Eringen, A.C.: Theory of thermomicrofluids. J. Math. Anal. Appl. 38(2), 480–496 (1972)

    Article  Google Scholar 

  11. Haghighi, A.R., Shahbazi, M.: Mathematical modeling of micropolar fluid flow through an overlapping arterial stenosis. Int. J. Biomath. (2015). https://doi.org/10.1142/S1793524515500564

  12. Hansen, J.S., Daivis, P., Todd, B., Bruss. H., Dyre, J.C.: Nanoflow hydrodynamics. Phys. Rev. E (2011). https://doi.org/10.1103/PhysRevE.84.036311

  13. Heywood, J.G., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equations. Int. J. Numer. Meth. Fluids 22(5), 325–352 (1996)

    Article  MathSciNet  Google Scholar 

  14. Hossain, Md.M., Mandal, A.C., Roy, N.C., Hossain, M.A.: Fluctuating flow of thermomicropolar fluid past a vertical surface. Appl. Appl. Math. 8(1), 128–150 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Hossain, Md.M., Mandal, A.C., Roy, N.C., Hossain, M.A.: Transient natural convection flow of thermomicropolar fluid of micropolar thermal conductivity along a nonuniformly heated vertical surface. Adv. Mech. Eng. (2014). https://doi.org/10.1155/2014/141437

  16. Johnston, G.J., Wayte, R., Spikes, H.A.: The measurement and study of very thin lubricant films in concetrated contacts. Tribol. Trans. 34(2), 187–194 (1991)

    Article  Google Scholar 

  17. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. I. Springer, Berlin (1994)

    MATH  Google Scholar 

  18. Kalita, P., Lukaszewicz, G., Siemanowski, J.: Rayleigh–Bénard problem for thermomicropolar fluids. Topol. Methods Nonlinear Anal. 52(2), 477–514 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Lukaszewicz, G.: Long-time behavior of 2D micropolar fluid flows. Math. Comput. Model. 34(5), 487–509 (2001)

    Article  MathSciNet  Google Scholar 

  20. Lukaszewicz, G.: Micropolar Fluids: Theory and Applications. Birkhauser, Boston (1999)

    Book  Google Scholar 

  21. Lukaszewicz, G., Pažanin, I., Radulović, M.: Asymptotic analysis of the thermomicropolar fluid flow through a thin channel with cooling. Appl. Anal. 101(9), 3141–3169 (2022)

    Article  MathSciNet  Google Scholar 

  22. Maddah, S., Navidbaksh, M., Atefi, Gh.: Continuous model for dispersion of discrete blood cells with an ALE formulation of pulsatile micropolar fluid flow in flexible tube. J. Dispers. Sci. Technol. 34(8), 1165–1172 (2013)

    Article  Google Scholar 

  23. Marušić-Paloka, E.: Rigorous justification of the Kirchhoff law for junction of thin pipes filled with viscous fluid. Asymptot. Anal. 33(1), 51–66 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Marušić-Paloka, E.: The effects of flexion and torsion on a fluid flow through a curved pipe. Appl. Math. Optim. 44(3), 245–272 (2001)

    Article  MathSciNet  Google Scholar 

  25. Marušić-Paloka, E., Pažanin, I.: Non-isothermal fluid flow through a thin pipe with cooling. Appl. Anal. 88(4), 495–515 (2009)

    Article  MathSciNet  Google Scholar 

  26. Marušić-Paloka, E., Pažanin, I.: On the effects of curved geometry on heat conduction through a distorted pipe. Nonlinear Anal. Real World Appl. 11(6), 4554–4564 (2010)

    Article  MathSciNet  Google Scholar 

  27. Marušić-Paloka, E., Pažanin, I., Radulović, M.: On the Darcy–Brinkman–Boussinesq flow in a thin channel with irregularities. Transp. Porous Media 131, 633–660 (2020)

    Article  MathSciNet  Google Scholar 

  28. Papautsky, I., Brazzle, J., Ameel, T., Frazier, A.B.: Laminar fluid behavior in microchannels using micropolar fluid theory. Sens. Actuators A Phys. 73, 101–108 (1999)

    Article  Google Scholar 

  29. Payne, L.E., Straughan, B.: Critical Rayleigh numbers for oscillatory and nonlinear convection in an isotropic thermomicropolar fluid. Int. J. Eng. Sci. 27(7), 827–836 (1989)

    Article  Google Scholar 

  30. Pažanin, I.: Effective flow of micropolar fluid flow through a thin or long pipe. Math. Probl. Eng. (2011). https://doi.org/10.1155/2011/127070

  31. Pažanin, I.: Asymptotic behaviour of micropolar fluid flow through a curved pipe. Acta Appl. Math. (2011). https://doi.org/10.1007/s10440-011-9625-7

  32. Pažanin, I., Siddheshwar, P.: Analysis of the laminar Newtonian fluid flow through a thin fracture modelled as fluid-saturated sparsely packed porous medium. Z. Naturforsch. A 72(3), 253–259 (2017)

    Article  Google Scholar 

  33. Rahman, M.M., Eltayeb, I.A.: Thermo-micropolar fluid flow along a vertical permeable plate with uniform surface heat flux in the presence of heat generation. Therm. Sci. 13(1), 23–36 (2009)

    Article  Google Scholar 

  34. Reddy, J.V., Srikanth, D.: The polar fluid model for blood flow through a tapered artery with overlapping stenosis: effects of catheter and velocity slip. Appl. Bionics Biomech. (2015). https://doi.org/10.1155/2015/174387

  35. Tarasinska, A.: Global attractor for heat convection problem in a micropolar fluid. Math. Methods Appl. Sci. 29(11), 1215–1236 (2006)

    Article  MathSciNet  Google Scholar 

  36. Zaman, A., Ali, N., Anwar Beg, O.: Numerical simulation of the unsteady micropolar hemodynamics in a tapered catheterized artery with a combination of stenosis and aneurysm. Med. Biol. Eng. Comput. 54(9), 1423–1436 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors of this work have been supported by the Croatian Science Foundation under the project MultiFM (IP-2019-04-1140). We thank the Reviewers for their valuable remarks and comments that helped to correct and improve our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Radulović.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pažanin, I., Radulović, M. & Rukavina, B. Rigorous derivation of the asymptotic model describing a steady thermomicropolar fluid flow through a curvilinear channel. Z. Angew. Math. Phys. 73, 195 (2022). https://doi.org/10.1007/s00033-022-01831-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01831-8

Keywords

Mathematics Subject Classification

Navigation