Skip to main content
Log in

On Traveling Waves in Compressible Euler Equations with Thermal Conductivity

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

Heat conduction plays an important role in fluid dynamics. However, the modeling of thermal conductivity involves higher order derivatives which causes a tough obstacle for the study of traveling waves. In this work, we propose a modified term for the thermal conductivity coefficient in viscous–capillary compressible Euler equations. By approximation, which is crucial in any mathematical modeling, the heat conduction may be assumed to depend only on the specific volume. Then, we can derive a \(2\times 2\) system of first-order differential equations for traveling waves of the given model, whose equilibria can be shown to admit a stable–saddle connection for 1-shocks and a saddle–stable connection for 3-shocks. This establishes the existence of a traveling wave of the viscous–capillary Euler equations with the presence of a modified thermal conductivity effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bedjaoui, N., Chalons, C., Coquel, F., LeFloch, P.G.: Non-monotone traveling waves in van der Waals fluids. Ann. Appl. 3, 419–446 (2005)

    Article  Google Scholar 

  2. Bedjaoui, N., LeFloch, P.G.: Diffusive-dispersive traveling waves and kinetic relations. III. An hyperbolic model from nonlinear elastodynamics. Ann. Univ. Ferra Sc. Mat. 44, 117–144 (2001)

    MATH  Google Scholar 

  3. Bedjaoui, N., LeFloch, P.G.: Diffusive-dispersive traveling waves and kinetic relations. I. Non-convex hyperbolic conservation laws. J. Differ. Equ. 178, 574–607 (2002)

    Article  Google Scholar 

  4. Bedjaoui, N., LeFloch, P.G.: Diffusive-dispersive traveling waves and kinetic relations. II. A hyperbolic-elliptic model of phase-transition dynamics. Proc. R. Soc. Edinburgh 132 A, 545–565 (2002)

    Article  Google Scholar 

  5. Bedjaoui, N., LeFloch, P.G.: Diffusive–dispersive traveling waves and kinetic relations. IV. Compressible Euler equations. Chin. Ann. Math. 24B, 17–34 (2003)

    Article  MathSciNet  Google Scholar 

  6. Bedjaoui, N., LeFloch, P.G.: Diffusive-dispersive traveling waves and kinetic relations. V. Singular diffusion and nonlinear dispersion. Proc. R. Soc. Edinburgh 134A, 815–843 (2004)

    Article  Google Scholar 

  7. Bona, J., Schonbek, M.E.: Traveling-wave solutions to the Korteweg-de Vries–Burgers equation. Proc. R. Soc. Edinburgh Sec. A 101, 207–226 (1985)

    Article  Google Scholar 

  8. Benzoni-Gavage, S., Danchin, R., Descombes, S., Jamet, D.: Structure of Korteweg models and stability of diffuse interfaces. Interfaces Free Bound. 7, 371–414 (2005)

    Article  MathSciNet  Google Scholar 

  9. Benzoni-Gavage, S., Danchin, R., Descombes, S.: Well-posedness of one-dimensional Korteweg models. Electron. J. Differ. Equ. 59, 1–35 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Benzoni-Gavage, S., Danchin, R., Descombes, S.: On the well-posedness of the Euler–Korteweg model in several space dimensions. Indiana Univ. Math. J. 56, 1499–1579 (2007)

    Article  MathSciNet  Google Scholar 

  11. Fan, H.: A vanishing viscosity approach on the dynamics of phase transitions in van der Waals fluids. J. Differ. Equ. 103, 179–204 (1993)

    Article  MathSciNet  Google Scholar 

  12. Fan, H.: Traveling waves, Riemann problems and computations of a model of the dynamics of liquid/vapor phase transitions. J. Differ. Equ. 150, 385–437 (1998)

    Article  MathSciNet  Google Scholar 

  13. Gilbarg, D.: The existence and limit behavior of the one-dimensional shock layer. Am. J. Math. 73, 256–274 (1951)

    Article  MathSciNet  Google Scholar 

  14. Hayes, B.T., LeFloch, P.G.: Non-classical shocks and kinetic relations: scalar conservation laws. Arch. Ration. Mech. Anal. 139, 1–56 (1997)

    Article  MathSciNet  Google Scholar 

  15. Hu, W.: Travelling waves for a nonlocal delay differential equation. Bull. Iran. Math. Soc. 45, 791–798 (2019)

    Article  MathSciNet  Google Scholar 

  16. Jacobs, D., McKinney, W., Shearer, M.: Travelling wave solutions of the modified Korteweg-deVries–Burgers equation. J. Differ. Equ. 116, 448–467 (1995)

    Article  Google Scholar 

  17. Lax, P.D.: Shock waves and entropy. In: E.H. Zarantonello (Ed) Contributions to Nonlinear Functional Analysis, pp. 603–634 (1971)

  18. LeFloch, P.G.: Hyperbolic systems of conservation laws. The Theory of Classical and Nonclassical Shock Waves, Lectures in Mathematics. ETH Zürich, Birkhäuser (2002)

    Google Scholar 

  19. Liu, T.P.: The Riemann problem for general \(2\times 2\) conservation laws. Trans. Am. Math. Soc. 199, 89–112 (1974)

    MATH  Google Scholar 

  20. Shearer, M., Yang, Y.: The Riemann problem for a system of mixed type with a cubic nonlinearity. Proc. R. Soc. Edinburgh 125A, 675–699 (1995)

    Article  MathSciNet  Google Scholar 

  21. Slemrod, M.: Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Arch. Rational Mech. Anal. 81, 301–315 (1983)

    Article  MathSciNet  Google Scholar 

  22. Slemrod, M.: The viscosity–capillarity criterion for shocks and phase transitions. Arch. Ration. Mech. Anal. 83, 333–361 (1983)

    Article  MathSciNet  Google Scholar 

  23. Thanh, M.D.: Global existence of traveling wave for general flux functions. Nonlinear Anal.: T.M.A. 72, 231–239 (2010)

    Article  MathSciNet  Google Scholar 

  24. Thanh, M.D.: Traveling waves of an elliptic-hyperbolic model of phase transitions via varying viscosity–capillarity. J. Differ. Equ. 251, 439–456 (2011)

    Article  MathSciNet  Google Scholar 

  25. Thanh, M.D.: Existence of traveling waves in compressible Euler equations with viscosity and capilarity. Nonlinear Anal.: T.M.A. 75, 4884–4895 (2012)

    Article  Google Scholar 

  26. Thanh, M.D.: Remarks on traveling waves and equilibria in fluid dynamics with viscosity, capillarity, and heat conduction. Nonlinear Anal.: R.W.A. 16, 40–47 (2014)

    Article  MathSciNet  Google Scholar 

  27. Thanh, M.D., Hiep, N.H.: On traveling waves in viscous–capillary Euler equations with thermal conductivity. Appl. Math. Comput 234, 127–141 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the reviewers for their very constructive comments and fruitful discussions.

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant number “101.02-2019.306”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mai Duc Thanh.

Additional information

Communicated by Asadollah Aghajani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thanh, M.D., Vinh, D.X. On Traveling Waves in Compressible Euler Equations with Thermal Conductivity. Bull. Iran. Math. Soc. 47, 75–89 (2021). https://doi.org/10.1007/s41980-020-00367-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-020-00367-9

Keywords

Mathematics Subject Classification

Navigation