Skip to main content
Log in

On a parameter-stability for normalized ground states of two-dimensional cubic–quintic nonlinear Schrödinger equations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper we consider the 2D cubic–quintic nonlinear Schrödinger equation with harmonic potential:

$$\begin{aligned} i\partial _t \psi =-\Delta \psi +|x|^2\psi -|\psi |^2\psi +\epsilon |\psi |^{4}\psi ,\ \ \ (t,x)\in {\mathbb {R}}\times {\mathbb {R}}^2. \end{aligned}$$

where \(\epsilon >0\). We study the \(\epsilon \)-stability and \(\epsilon \)-instability (blow-up) of the ground state solitary waves of the form \(\psi (t,x)=e^{-i\mu t}u_{\epsilon }(x)\) as \(\epsilon \rightarrow 0^+\). The \(\epsilon \)-stability occurs if \(\Vert u_{\epsilon }\Vert ^2_{L^2}<\rho _c\) (where \(2/\rho _c\) is the best constant of Gagliardo–Nirenberg inequality), while \(\epsilon \)-blow-up occurs if \(\Vert u_{\epsilon }\Vert ^2_{L^2}\ge \rho _c\). Two optimal blow-up rates will be computed. We show that as \(\epsilon \rightarrow 0^+\), \(\mathop \int \limits _{{\mathbb {R}}^2}|\nabla u_\epsilon |^2\,\mathrm{d}x\sim \epsilon ^{-\frac{1}{3}}\) for \(\Vert u_{\epsilon }\Vert ^2_{L^2}=\rho _c\), and \(\int _{{\mathbb {R}}^2}|\nabla u_\epsilon |^2\,\mathrm{d}x\sim \epsilon ^{-1}\) for \(\Vert u_{\epsilon }\Vert ^2_{L^2}>\rho _c\). Moreover, two different blow-up profiles will be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Desyatnikov, A., Maimistov, A., Malomed, B.: Three-dimensional spinning solitons in dispersive media with the cubic-quintic nonlinearity. Phys. Rev. E 61, 3107–3113 (2000)

    Article  Google Scholar 

  2. Mihalache, D., Mazilu, D., Crasovan, L.-C., Malomed, B.A., Lederer, F.: Three-dimensional spinning solitons in the cubic-quintic nonlinear medium. Phys. Rev. E 61, 7142–7145 (2000)

    Article  Google Scholar 

  3. Buslaev, V.B., Grikurov, V.E.: Simulation of instability of bright solitons for NLS with saturating nonlinearity. IMACS J. Math. Comput. Simul. 56, 539–546 (2001)

    Article  MathSciNet  Google Scholar 

  4. Chen, S., Baronio, F., Soto-Crespo, J.M., Liu, Y., Grelu, P.: Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrödinger equations. Phys. Rev. E 93, 062202 (2016)

    Article  MathSciNet  Google Scholar 

  5. Boudebs, G., Cherukulappurath, S., Leblond, H., Troles, J., Smektala, F., Sanchez, F.: Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses. Opt. Commun. 219, 427–433 (2003)

    Article  Google Scholar 

  6. Lawrence, B.L., Cha, M., Kang, J.U., Toruellas, W., Stegeman, G., Baker, G., Meth, J., Etemad, S.: Large purely refractive nonlinear index of single crystal P-toluene sulphonate (PTS) at 1600 nm. Electron. Lett. 30, 447 (1994)

    Article  Google Scholar 

  7. Guo, Y.J., Seiringer, R.: On the Mass concentration for Bose–Einstein condensation with attractive interactions. Lett. Math. Phys. 104, 141–156 (2014)

    Article  MathSciNet  Google Scholar 

  8. Guo, Y.J., Zeng, X.Y., Zhou, H.S.: Energy estimates and symmetry breaking in attractive Bose–Einstein condensates with ring-shaped potentials. Ann. Inst. H. Pioncaré Anal. Non Lineaire 33, 809–828 (2016)

    Article  MathSciNet  Google Scholar 

  9. Guo, Y.J., Wang, Z.Q., Zeng, X., Zhou, H.S.: Properties of ground states of attractive Gross–Pitaevskii equations with multi-well potentials. Nonlinearity 31, 957–979 (2018)

    Article  MathSciNet  Google Scholar 

  10. Deng, Y., Guo, Y., Lu, L.: On the collapse and concentration of Bose–Einstein condensates with inhomogeneous attractive interactions. Calc. Var. 54, 99–118 (2015)

    Article  MathSciNet  Google Scholar 

  11. Wang, Q., Zhao, D.: Existence and mass concentration of 2D attractive Bose–Einstein condensates with periodic potentials. J. Differ. Equ. 262, 2684–2704 (2017)

    Article  MathSciNet  Google Scholar 

  12. Killip, R., Oh, T., Pocovnicu, O., Visan, M.: Solitons and Scattering for the Cubic-Quintic Nonlinear Schrödinger Equation on \({\mathbb{R} }^3\). Arch. Ration. Mech. Anal. 225, 469–548 (2017)

    Article  MathSciNet  Google Scholar 

  13. Killip, R., Rowan, M., Murphy, J., Visan, M.: The initial value problem for the cubic-quintic NLS with nonvanishing boundary conditions. SIAM J. Math. Anal. 50, 2681–2739 (2018)

    Article  MathSciNet  Google Scholar 

  14. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities. J. Differ. Equ. 269, 6941–6987 (2020)

    Article  MathSciNet  Google Scholar 

  15. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case. J. Funct. Anal. 279, 108610 (2020)

    Article  MathSciNet  Google Scholar 

  16. Carles, R., Sparber, C.: Orbital stability vs. scattering in the cubic-quintic Schrödinger equation. Reviews in Math. Phys. 33, 2150004 (2021)

  17. Lewin, M., Nodari, S.R.: The double-power nonlinear Schrödinger equation and its generalizations: uniqueness, non-degeneracy and applications. Calc. Var. PDE 59, 197 (2020)

    Article  Google Scholar 

  18. Tao, T., Visan, M., Zhang, X.: The nonlinear Schrödinger equation with combined power-type nonlinearities. Commun. Partial Differ. Equ. 32, 1281–1343 (2007)

    Article  Google Scholar 

  19. Song, X.: Stability and instability of standing waves to a system of Schrödinger equations with combined power-type nonlinearities. J. Math. Anal. Appl. 366, 345–359 (2010)

    Article  MathSciNet  Google Scholar 

  20. Xu, R., Xu, C.: Sharp conditions of global existence for second-order derivative nonlinear Schrödinger equations with combined power-type nonlinearities. Z. Angew. Math. Mech. 93, 29–37 (2013)

    Article  MathSciNet  Google Scholar 

  21. Stefan, C., Yvan, M., Pierre, R.: Minimal mass blow up solutions for a double power nonlinear Schrödinger equation. Rev. Mat. Iberoam. 32, 795–833 (2016)

    Article  MathSciNet  Google Scholar 

  22. Feng, B.: On the blow-up solutions for the nonlinear Schrödinger equation with combined power-type nonlinearities. J. Evol. Equ. 18, 203–220 (2018)

    Article  MathSciNet  Google Scholar 

  23. Feng, B.: On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities, Commun. Pure. Appl. Anal. 17, 1785–1804 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Feng, B., Chen, R., Wang, Q.: Instability of standing waves for the nonlinear Schrödinger-Poisson equation in the \(L^2\)-critical case. J. Dyn. Differ. Equ. 32, 1442–1455 (2020)

    Article  Google Scholar 

  25. Li, S., Yan, J., Zhu, X.: Constraint minimizers of perturbed Gross–Pitaevskii energy functionals in \({\mathbb{R} }^N\). Commun. Pure Appl. Anal. 18, 65–81 (2019)

    Article  MathSciNet  Google Scholar 

  26. Zhang, J.: Stability of attractive Bose–Einstein condensates. J. Stat. Phys. 101, 731–746 (2000)

    Article  MathSciNet  Google Scholar 

  27. Cazenave, T.: Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10. New York University, Courant Institute of Mathematical Sciences, AMS, New York (2003)

    Google Scholar 

  28. Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolations estimates. Commun. Math. Phys. 87, 567–576 (1983)

    Article  Google Scholar 

  29. Kavian, O., Weissler, F.B.: Self-similar solutions of the pseudo-conformally invariant nonlinear Schrödinger equation. Mich. Math. J. 41(1), 151–173 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingxuan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Qingxuan Wang is the corresponding author who was partially supported by the NSFC (11801519 and 11971436); Binhua Feng was partially supported by NSFC (11601435).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Feng, B. On a parameter-stability for normalized ground states of two-dimensional cubic–quintic nonlinear Schrödinger equations. Z. Angew. Math. Phys. 73, 179 (2022). https://doi.org/10.1007/s00033-022-01820-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01820-x

Keywords

Mathematics Subject Classification

Navigation