Skip to main content
Log in

Impact of discontinuous harvesting on a diffusive predator–prey model with fear and Allee effect

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we investigate a diffusive predator–prey model with discontinuous harvesting. The model’s boundedness is explored, as well as the presence and stability of equilibria, Hopf bifurcation, and Turing bifurcation. Additionally, we establish the sliding mode’s existence and study different types of sliding mode bifurcation, including boundary node, grazing, buckling, and crossing bifurcation. Additionally, computer simulations demonstrate that the system may develop a variety of spatial patterns depending on the harvesting threshold, the cost of fear, and the initial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Stephens, P.A., Sutherland, W.J.: Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol. Evol. 14(10), 401–405 (1999)

    Article  Google Scholar 

  2. Wang, J., Shi, J., Wei, J.: Predator-prey system with strong Allee effect in prey. J. Math. Biol 62(3), 291–331 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barton, N.H., Turelli, M.: Spatial waves of advance with bistable dynamics: cytoplasmic and genetic analogues of Allee effects. Am. Nat. 178(3), 48–75 (2011)

    Article  Google Scholar 

  4. Wang, W., Zhu, Y.N., Cai, Y., Wang, W.: Dynamical complexity induced by Allee effect in a predator-prey model. Nonlinear Anal. Real World Appl. 16(1), 103–119 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, S., Liu, Z., Shi, J.: Nonexistence of nonconstant positive steady states of a diffusive predator-prey model with fear effect. J. Nonlinear Model. Anal. 1(1), 47–56 (2019)

    Google Scholar 

  6. Cresswell, W.: Predation in bird populations. J. Ornithol. 152(1), 251–263 (2011)

    Article  Google Scholar 

  7. Zanette, L.Y., White, A.F., Allen, M.C., Clinchy, M.: Perceived predation risk reduces the number of offspring songbirds produce per year. Science 334(6061), 1398–1401 (2011)

    Article  Google Scholar 

  8. Wang, X., Zanette, L., Zou, X.: Modelling the fear effect in predator-prey interactions. J. Math. Biol. 73(5), 1179–1204 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sasmal, S.K., Takeuchi, Y.: Dynamics of a predator-prey system with fear and group defense. J. Math. Anal. Appl. 481(1), 123471 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang, H., Cai, Y., Shengmao, F., Wang, W.: Impact of the fear effect in a prey-predator model incorporating a prey refuge. Appl. Math. Comput. 356, 328–337 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sasmal, S.K.: Population dynamics with multiple Allee effects induced by fear factors-a mathematical study on prey-predator interactions. Appl. Math. Model. 64, 1–14 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, J., Cai, Y., Fu, S., Wang, W.: The effect of the fear factor on the dynamics of a predator-prey model incorporating the prey refuge. Chaos Interdiscip. J. Nonlinear Sci. 29(8), 083109 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Duan, D., Niu, B., Wei, J.: Hopf-hopf bifurcation and chaotic attractors in a delayed diffusive predator-prey model with fear effect. Chaos Solitons Fractals 123, 206–216 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, X., Zou, X.: Pattern formation of a predator-prey model with the cost of anti-predator behaviors. Math. Biosci. Eng. 15(3), 775–805 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Luo, J., Zhao, Y.: Stability and bifurcation analysis in a predator-prey system with constant harvesting and prey group defense. Int. J. Bifurc. Chaos 27(11), 1750179 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang, J., Liu, S., Ruan, S., Zhang, X.: Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Commun. Pure Appl. Anal 15(3), 1041–1055 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guin, L.N., Acharya, S.: Dynamic behaviour of a reaction-diffusion predator-prey model with both refuge and harvesting. Nonlinear Dyn. 88(2), 1501–1533 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tiwari, V., Tripathi, J.P., Abbas, S., Wang, J.-S., Sun, G.-Q., Jin, Z.: Qualitative analysis of a diffusive Crowley-Martin predator-prey model: the role of nonlinear predator harvesting. Nonlinear Dyn. 98(2), 1169–1189 (2019)

    Article  Google Scholar 

  19. Gupta, R.P., Chandra, P.: Dynamical properties of a prey-predator-scavenger model with quadratic harvesting. Commun. Nonlinear Sci. Numer. Simul. 49, 202–214 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Spencer, P.D., Collie, J.S.: Management strategies for fish populations subject to long term environmental variability and depensatory predation. In: Proceedings of the International Symposium on Management Strategies for Exploited Fish Populations, vol. 57, pp. 629–650 (1993)

  21. Bhattacharyya, J., Roelke, D.L., Pal, S., Banerjee, S.: Sliding mode dynamics on a prey-predator system with intermittent harvesting policy. Nonlinear Dyn. 98(2), 1299–1314 (2019)

    Article  Google Scholar 

  22. Mendoza, M.M.E., Amit, B., Eugenius, K., da Iskin, S.C.M.: Threshold policies control for predator-prey systems using a control Liapunov function approach. Theor. Popul. Biol. 67(4), 273–284 (2005)

    Article  MATH  Google Scholar 

  23. Rebaza, J.: Dynamics of prey threshold harvesting and refuge. J. Comput. Appl. Math. 236(7), 1743–1752 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, X., Tang, S.: Filippov ratio-dependent prey-predator model with threshold policy control. Abstr. Appl. Anal. 280945, 1–11 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Meza, M.E.M., Bhaya, A., Kaszkurewicz, E.: Stabilizing control of ratio-dependent predator-prey models. Nonlinear Anal. Real World Appl. 7(4), 619–633 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tang, S., Liang, J., Xiao, Y., Cheke, R.A.: Sliding bifurcations of Filippov two stage pest control models with economic thresholds. SIAM J. Appl. Math. 72(4), 1061–1080 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, X., Tang, S.: Existence of multiple sliding segments and bifurcation analysis of Filippov prey-predator model. Appl. Math. Comput. 239, 265–284 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Gupta, R.P., Chandra, P.: Dynamical properties of a prey-predator-scavenger model with quadratic harvesting. Commun. Nonlinear Sci. Numer. Simul. 49, 202–214 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, X., Zhao, H.: Dynamics analysis of a delayed reaction-diffusion predator-prey system with non-continuous threshold harvesting. Math. Biosci. 289, 130–141 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tang, B., Xiao, Y.: Bifurcation analysis of a predator-prey model with anti-predator behaviour. Chaos Solitons Fractals 70, 58–68 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Cantrell, R.S., Cosners, C., Hutson, V.: Permanence in ecological systems with spatial heterogeneity. Proc. R. Soc. Edinb. Sect. A Math. 123(3), 533–559 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  32. Filippov, A.F., Aleksei Fedorovich Filippov: Differential equations with discontinuous right-hand side. Matematicheskii Sbornik 93(1), 99–128 (1960)

    MathSciNet  MATH  Google Scholar 

  33. Tang, S., Liang, J., Xiao, Y., Cheke, R.A.: Sliding bifurcations of Filippov two stage pest control models with economic thresholds. SIAM J. Appl. Math. 72(4), 1061–1080 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, A., Xiao, Y.: Sliding bifurcation and global dynamics of a Filippov epidemic model with vaccination. Int. J. Bifurc. Chaos 23(08), 1350144:1–1350144:32 (2013)

  35. Yi, F., Wei, J., Shi, J.: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system. J. Differ. Equ. 246(5), 1944–1977 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hassard, B.D., Hassard, B.D., Kazarinoff, N.D., Wan, Y.-H., Wan, Y.W.: Theory and Applications of Hopf Bifurcation, vol. 41. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  37. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  38. Kuznetsov, Y.A., Rinaldi, S., Gragnani, A.: One-parameter bifurcations in planar Filippov systems. Int. J. Bifurc. Chaos 13(08), 2157–2188 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work is supported by National Science Foundation of China under Grant 11971013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyong Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhao, H. & Yuan, Y. Impact of discontinuous harvesting on a diffusive predator–prey model with fear and Allee effect. Z. Angew. Math. Phys. 73, 168 (2022). https://doi.org/10.1007/s00033-022-01807-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01807-8

Keywords

Mathematics Subject Classification

Navigation