In this section, we extend the estimates obtained in the previous section to the thermoelastic case, that is, a fast decay of the decaying solutions. Thus, we consider the system:
$$\begin{aligned} \begin{array}{l} \rho \ddot{u}_i=\mu u_{i,jj}+(\lambda +\mu )u_{j,ji}-\beta \theta _{,i},\\ c(a_1\dot{\theta }+a_2\ddot{\theta }+\cdots +a_{n+1}\theta ^{(n+1)})=b_0\Delta \theta +b_1\Delta \dot{\theta }+\cdots +b_n\Delta \theta ^{(n)}\\ \qquad -\beta (a_1\dot{u}_{i,i}+a_2\ddot{u}_{i,i}+\cdots + a_{n+1}u_{i,i}^{(n+1)}), \end{array} \end{aligned}$$
(6.1)
with the boundary conditions:
$$\begin{aligned} \begin{array}{l} u_i({\varvec{x}},t)=\theta ({\varvec{x}},t)=0\quad \hbox {for a.e. } {\varvec{x}}\in [0,\infty )\times \partial D,\\ u_i(0,x_2,x_3,t)=f_i(x_2,x_3,t) \quad \hbox {for a.e. } (x_2,x_3)\in D,\\ \theta (0,x_2,x_3,t)=f(x_2,x_3,t) \quad \hbox {for a.e. } (x_2,x_3)\in D, \end{array} \end{aligned}$$
(6.2)
and the initial conditions:
$$\begin{aligned} u_i( {\varvec{x}},0)=\dot{u}_i( {\varvec{x}},0)=\theta ({\varvec{x}},0)=0 \quad \hbox {for a.e. } {\varvec{x}}\in B. \end{aligned}$$
(6.3)
Again, we assume that \(f_i(x_2,x_3,0)=f(x_2,x_3,0)=0\) for a.e. \((x_2,x_3)\in \partial D\)Footnote 1.
It is worth noting that here \(u_i\) is the displacement vector, \(\theta \) is the temperature, \(\lambda \) and \(\mu \) are the Lamé constants, \(\rho \) is the mass density, c is the heat capacity and \(\beta \) is the coupling coefficient.
To make the calculations easier we assume that
$$\begin{aligned} \rho>0,\quad \mu>0,\quad \lambda +\mu \ge 0,\quad c>0. \end{aligned}$$
We also assume that \(a_{n+1}>0\) and \(b_n>0\).
In order to study the problem it is worth writing the displacement equation as
$$\begin{aligned} \rho \ddot{\tilde{u}}_i=\mu \tilde{u}_{i,jj}+(\lambda +\mu )\tilde{u}_{j,ji}-\beta \tilde{\theta }_{,i}. \end{aligned}$$
We can define the function
$$\begin{aligned} G_0(z,t)=-\int \limits _0^t\int \limits _0^s\int \limits _D e^{-2\omega \tau }\Big [\mu \tilde{u}_{i,1}\dot{\hat{u}}_i+(\lambda +\mu )\tilde{u}_{k,k}\dot{\hat{u}}_1 +\beta \tilde{\theta }\dot{\hat{u}}_1+\tilde{\theta }_{,1}\tilde{\theta }\Big ]\, \mathrm{d}a\mathrm{d}\tau \mathrm{d}s. \end{aligned}$$
In this section, we want to obtain a new spatial decay estimate. Therefore, we assume that
$$\begin{aligned} \displaystyle \lim _{z\rightarrow \infty } G_0(z,t)=0 \quad \hbox {uniformly as }\quad O(z^{-3}). \end{aligned}$$
(6.4)
We obtain that
$$\begin{aligned} \begin{array}{l} \displaystyle G_0(z,t)=\int \limits _0^t\int \limits _0^s\int \limits _{B(z)} e^{-2\omega \tau }\Big [\rho \ddot{\tilde{u}}_i\dot{\hat{u}}_i +\mu \tilde{u}_{i,j}\dot{\hat{u}}_{i,j}+(\lambda +\mu )\tilde{u}_{i,i}\dot{\hat{u}}_{j,j}\\ \qquad \displaystyle +|\nabla \tilde{\theta }|^2+c\tilde{\theta }\dot{\hat{\theta }}\Big ]\, dvd\tau \mathrm{d}s, \end{array} \end{aligned}$$
where \(B(z)=\{{\varvec{x}}\in B\; ; \; x_1\ge z\}.\) We note that
$$\begin{aligned} \begin{array}{l} \displaystyle \ddot{\tilde{u}}_i\dot{\hat{u}}_i=(b_0\ddot{u}_i+b_1\dddot{u}_i+\cdots + b_n u_i^{(n+2)}) (a_1\dot{u}_i+a_2\ddot{u}_i+\cdots +a_{n+1}u_i^{(n+1)})\\ \quad = b_na_{n+1}u_i^{(n+2)}u_i^{(n+1)}+ b_n u_i^{(n+2)}(a_1\dot{u}_i+a_2\ddot{u}_i+\cdots +a_{n}u^{(n)}_i)\\ \qquad +(b_0\ddot{u}_i+b_1\dddot{u}_i+\cdots + b_{n-1} u^{(n+1)}) (a_1\dot{u}_i+a_2\ddot{u}_i+\cdots +a_{n+1}u^{(n+1)}_i) \\ \quad \displaystyle =\frac{d}{dt}\Big [\frac{1}{2}b_na_{n+1} u_{i}^{(n+1)}u_i^{(n+1)} + b_n u_i^{(n+1)}(a_1\dot{u}_i+a_2\ddot{u}_i+\cdots +a_{n}u^{(n)}_i)\Big ]\\ \qquad +(b_0\ddot{u}_i+b_1\dddot{u}_i+\cdots + b_{n-1} u^{(n+1)}) (a_1\dot{u}_i+a_2\ddot{u}_i+\cdots +a_{n+1}u^{(n+1)}_i)\\ \qquad -b_nu_i^{(n+1)}(a_1\ddot{u}_i+\cdots + a_nu_i^{(n+1)}),\\ \displaystyle {\tilde{u}}_{i,j}\dot{\hat{u}}_{i,j}=(b_0{u}_{i,j}+b_1\dot{u}_{i,j}+\cdots + b_n u^{(n)}_{i,j}) (a_1\dot{u}_{i,j}+a_2\ddot{u}_{i,j}+\cdots +a_{n+1}u^{(n+1)}_{i,j})\\ \quad \displaystyle = b_n a_{n+1} u_{i,j}^{(n)} u_{i,j}^{(n+1)}+ b_n u_{i,j}^{(n)}(a_1 \dot{u}_{i,j}+a_2\ddot{u}_{i,j}+\cdots +a_n u_{i,j}^{(n)})\\ \qquad +(b_0 u_{i,j}+b_1\dot{u}_{i,j}+\cdots +b_{n-1} u_{i,j}^{(n-1)}) (a_1\dot{u}_{i,j}+a_2 \ddot{u}_{i,j}+\cdots +a_{n+1} u_{i,j}^{(n+1)})\\ \quad \displaystyle =\frac{d}{dt}\Big [\frac{1}{2}b_na_{n+1} u_{i,j}^{(n)}u_{i,j}^{(n)} + (b_0 u_{i,j}+b_1\dot{u}_{i,j}+\cdots +b_{n-1} u_{i,j}^{(n-1)})\hat{u}_{i,j}\Big ]\\ \qquad +b_n u_{i,j}^{(n)}(a_1\dot{u}_{i,j}+a_2\ddot{u}_{i,j}+\cdots + a_{n} u_{i,j}^{(n+1)})\\ \qquad -(b_0 \dot{u}_{i,j}+b_1\ddot{u}_{i,j}+\cdots + b_{n-1}u_{i,j}^{(n)}) \hat{u}_{i,j}. \end{array} \end{aligned}$$
In a similar way, we also have
$$\begin{aligned} \begin{array}{l} \displaystyle \tilde{u}_{i,i}\hat{u}_{j,j}=\frac{\mathrm{d}}{\mathrm{d}t}\Big [\frac{1}{2}b_na_{n+1} u_{i,i}^{(n)}u_{j,j}^{(n)} +(b_0 u_{i,i}+b_1\dot{u}_{i,j}+\cdots +b_{n-1} u_{i,i}^{(n-1)})\hat{u}_{j,j}\Big ]\\ \qquad +b_n u_{i,i}^{(n)}(a_1\dot{u}_{j,j}+a_2\ddot{u}_{j,j}+\cdots + a_{n} u_{i,j}^{(n)})\\ \qquad -(b_0 \dot{u}_{i,i}+b_1\ddot{u}_{i,i}+\cdots + b_{n-1}u_{i,i}^{(n)}) \hat{u}_{j,j}. \end{array} \end{aligned}$$
We then obtain
$$\begin{aligned} \begin{array}{l} \displaystyle G_0(z,t)=\int \limits _0^t\int \limits _{B(z)}e^{-2\omega s}\Big [\frac{1}{2}b_na_{n+1}(\rho u_i^{(n+1)}u_i^{(n+1)} +\mu u_{i,j}^{(n)}u_{i,j}^{(n)}\\ \qquad \displaystyle +(\lambda +\mu )u_{i,i}^{(n)}u_{j,j}^{(n)} +c|\theta ^{(n)}|^2)+F_1\Big ]\, dvds+ \int \limits _0^t\int \limits _0^s\int \limits _{B(z)} e^{-2\omega \tau }\Big [\frac{\omega }{2}b_na_{n+1} (c|\theta ^{(n)}|^2\\ \qquad +\rho u_i^{(n+1)}u_i^{(n+1)} +\mu u_{i,j}^{(n)}u_{i,j}^{(n)}+(\lambda +\mu ) u_{i,i}^{(n)}u_{j,j}^{(n)} )+\omega F_1+F_2+|\nabla \tilde{\theta }|^2\Big ]\, dvd\tau \mathrm{d}s, \end{array} \end{aligned}$$
where
$$\begin{aligned} \begin{array}{l} \displaystyle F_1=\rho b_nu_i^{(n+1)}(a_1\dot{u}_i+\cdots +a_n u_i^{(n)})+ \mu (b_0u_{i,j}+\cdots +b_{n-1} u_{i,j}^{(n-1)})\hat{u}_{i,j}\\ \qquad +(\lambda +\mu )(b_0u_{i,i}+\cdots +b_{n-1} u_{i,i}^{(n-1)})\hat{u}_{j,j} +c(b_0\theta +\cdots +b_{n-1}\theta ^{(n-1)})\hat{\theta },\\ F_2=(b_0 \ddot{u}_i+\cdots +b_{n-1} u^{(n+1)}_i)(a_1\dot{u}_i+a_2\ddot{u}_i+\cdots +a_{n+1}u_i^{(n+1)})\\ \qquad -b_n u_i^{(n+1)}(a_1 \ddot{u}_i+\cdots +a_nu_i^{(n+1)}) +b_n u_{i,j}^{(n)}(a_1\dot{u}_{i,j}+\cdots + a_n u_{i,j}^{(n)})\\ \qquad - (b_0 \dot{u}_{i,j}+b_1\ddot{u}_{i,j}+\cdots +b_{n-1}u_{i,j}^{(n)})\hat{u}_{i,j} +b_nu_{i,i}^{(n)}(a_1 \dot{u}_{j,j}+\cdots + a_n u_{j,j}^{(n)})\\ \qquad -(b_0 \dot{u}_{i,i}+\cdots +b_{n-1} u_{i,i}^{(n)})\hat{u}_{j,j} +cb_n\theta ^{(n)}(a_1\dot{\theta }+\cdots + a_n\theta ^{(n)})\\ \qquad -c(b_0\dot{\theta }+\cdots +b_{n-1}\theta ^{(n)})\hat{\theta }. \end{array} \end{aligned}$$
By choosing \(\omega \) large enough we can obtain
$$\begin{aligned} \begin{array}{l} \displaystyle G_0(z,t)\ge \frac{1}{4}\int \limits _0^t\int \limits _{B(z)} e^{-2\omega s}b_n a_{n+1} \Big [ \rho u_i^{(n+1)}u_i^{(n+1)}+\mu u_{i,j}^{(n)}u_{i,j}^{(n)}+(\lambda +\mu )u_{i,i}^{(n)}u_{j,j}^{(n)}\\ \qquad \displaystyle +c|\theta ^{(n)}|^2\Big ]\, \mathrm{d}v \mathrm{d}s +\int \limits _0^t\int \limits _0^s\int \limits _{B(z)} e^{-2\omega \tau } \Big [|\nabla \theta |^2+\frac{\omega }{2} b_na_{n+1}(\rho u_i^{(n+1)}u_i^{(n+1)}\\ \qquad +\mu u_{i,j}^{(n)}u_{i,j}^{(n)}+(\lambda +\mu )u_{i,i}^{(n)}u_{j,j}^{(n)}+c|\theta ^{(n)}|^2)\Big ]\, \mathrm{d}v \mathrm{d}\tau \mathrm{d}s. \end{array} \end{aligned}$$
We consider now
$$\begin{aligned} G_1(z,t)=\int \limits _z^{\infty }G_0(\xi ,t)\, \mathrm{d}\xi , \end{aligned}$$
and so, we have
$$\begin{aligned} \frac{\partial G_1}{\partial t}= & {} - \int \limits _0^t\int \limits _{B(z)}e^{-2\omega s}\Big [ \mu \tilde{u}_{i,1}\dot{\hat{u}}_i+(\lambda +\mu )\tilde{u}_{1,i}\dot{\hat{u}}_i +\beta \tilde{\theta }\dot{\hat{u}}_i\Big ]\, dvds\\&+\frac{1}{2}\int \limits _0^t\int \limits _{D(z)} |\tilde{\theta }|^2\, \mathrm{d}a\mathrm{d}s,\\ \frac{\partial G_1}{\partial z}(z,t)= & {} -G_0(z,t),\\ \frac{\partial ^2 G_1(z,t)}{\partial z^2}\ge & {} \frac{1}{4} \int \limits _0^t\int \limits _{D(z)} e^{-2\omega s}b_n a_{n+1} \Big [ \rho u_i^{(n+1)}u_i^{(n+1)}+\mu u_{i,j}^{(n)}u_{i,j}^{(n)} +c|\theta ^{(n)}|^2 \\&+(\lambda +\mu )u_{i,i}^{(n)}u_{j,j}^{(n)}\Big ]\, \mathrm{d}a \mathrm{d}s +\int \limits _0^t\int \limits _0^s\int \limits _{D(z)} e^{-2\omega \tau } \Big [|\nabla \theta |^2+\frac{\omega }{2} b_na_{n+1}(\rho u_i^{(n+1)}u_i^{(n+1)}\\&+\mu u_{i,j}^{(n)}u_{i,j}^{(n)} +(\lambda +\mu )u_{i,i}^{(n)}u_{j,j}^{(n)}+c|\theta ^{(n)}|^2)\Big ]\, \mathrm{d}a \mathrm{d}\tau \mathrm{d}s. \end{aligned}$$
From here, the argument is again standard (see, for instance, [26, 27]).
We can obtain the existence of two positive constants \(\beta _1\) and R such that
$$\begin{aligned} \displaystyle \frac{\partial G_1}{\partial t}\le -\beta _1\frac{\partial G}{\partial z}+R\frac{\partial ^2 G_1}{\partial z^2}. \end{aligned}$$
If we denote
$$\begin{aligned} \mathcal {H}(z,t)=e^{a^2 Rt}e^{-az} G_1(z,t),\quad a=\frac{\beta _1}{2R}, \end{aligned}$$
we obtain
$$\begin{aligned} R\frac{\partial \mathcal {H}}{\partial z^2}\ge \frac{\partial \mathcal {H}}{\partial t}. \end{aligned}$$
An argument similar to the one proposed in the previous section shows that
$$\begin{aligned} G_1(z,t)\le e^{a(z-aRt)} \sup _{0\le s\le t}[{e^{2Rs}G_1(0,s)}]N(z,t), \end{aligned}$$
where \(\displaystyle N(z,t)=\frac{z}{(4\pi R)^{1/2}}\int \limits _0^t s^{-3/2}\text{ exp }\left( -\frac{z^2}{4\pi s}\right) ,\) and a change of variable implies that \(\displaystyle N(z,t)=\mathrm{erfc} \frac{z}{(4Ct)^{1/2}}\).
Therefore, we conclude that
$$\begin{aligned} \displaystyle G_1(z,t)\le \frac{A(t)}{z}\hbox {exp}\left( az-\frac{z^2}{4Rt}\right) , \end{aligned}$$
(6.5)
where
$$\begin{aligned} A(t)=(4Rt)^{1/2}e^{-a^2Rt}\sup _{0\le s\le t}{e^{a^2Rs}G_1(0,s)}. \end{aligned}$$
We remark that we can obtain upper bounds for this function A(t) in terms of the boundary conditions following the arguments already used in [17, 27].
It is clear that these estimates imply that the decay at the infinite is of the type of \( \displaystyle \hbox {exp}\left( \frac{-z^2}{4Rt}\right) \) which we summarize as follows.
Theorem 6.1
The solutions to problem (6.1)–(6.3) that satisfy condition (6.4) decay in the form (6.5).
We note that, for \(\omega \) large enough, we can choose R as near as we want to the value \(\displaystyle 2 \frac{b_n}{ca_{n+1}}.\) Therefore, asymptotically the rate of decay that we have obtained for the function \(G_1\) approaches to \(\displaystyle \hbox {exp}\left( -\frac{c a_{n+1} z^2}{8b_nt}\right) .\)