Skip to main content
Log in

Acoustic passive cloaking using thin outer resonators

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We consider the propagation of acoustic waves in a 2D waveguide unbounded in one direction and containing a compact obstacle. The wavenumber is fixed so that only one mode can propagate. The goal of this work is to propose a method to cloak the obstacle. More precisely, we add to the geometry thin outer resonators of width \(\varepsilon \) and we explain how to choose their positions as well as their lengths to get a transmission coefficient approximately equal to one as if there were no obstacle. In the process, we also investigate several related problems. In particular, we explain how to get zero transmission and how to design phase shifters. The approach is based on asymptotic analysis in presence of thin resonators. An essential point is that we work around resonance lengths of the resonators. This allows us to obtain effects of order one with geometrical perturbations of width \(\varepsilon \). Various numerical experiments illustrate the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. We remind the reader that trapped modes are non zero solutions of (1) which are in \(\mathrm {L}^2(\Omega )\) and therefore which decay exponentially at infinity.

  2. Due to the boundary condition, this definition of \(\gamma \) is formal. To make it rigorous, one way to proceed is to set \(\gamma :=G+\tilde{\gamma }\) where \(G(x,y)=\chi (r^{A}) \pi ^{-1}\ln (1/r^A)\) and \(\tilde{\gamma }\) is the outgoing function such that \(\Delta \tilde{\gamma }+\omega ^2\tilde{\gamma }=-(\Delta G+\omega ^2 G)\) in \(\Omega \), \(\partial _\nu \tilde{\gamma }=0\) on \(\partial \Omega \). Here the smooth cut-off function \(\chi \) is equal to one in a neighborhood of zero and its support is sufficiently small so that \(\partial \Omega =\partial S\) on the support of \((x,y)\mapsto \chi (r^{A})\).

  3. For a rigorous definition, work as for \(\gamma \) in (20).

References

  1. Alekseev, G.V., Lobanov, A.V., Spivak, Y.E.: Optimization method in problems of acoustic cloaking of material bodies. Comput. Math. Math. Phys. 57(9), 1459–1474 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bakharev, F.L., Nazarov, S.A.: Gaps in the spectrum of a waveguide composed of domains with different limiting dimensions. Sib. Math. J. 56(4), 575–592 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beale, J.T.: Scattering frequencies of resonators. Commun. Pure Appl. Math. 26(4), 549–563 (1973)

    Article  MATH  Google Scholar 

  4. Bera, A., Bonnet-Ben Dhia, A.-S., Chesnel, L.: A continuation method for building invisible obstacles in waveguides. Q. J. Mech. Appl. Math. 74(1), 83–116 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonnet-Ben Dhia, A.-S., Chesnel, L., Nazarov, S.A.: Perfect transmission invisibility for waveguides with sound hard walls. J. Math. Pures Appl. 111, 79–105 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonnet-Ben Dhia, A.-S., Legendre, G.: An alternative to Dirichlet-to-Neumann maps for waveguides. C. R. Acad. Sci. Ser. I 349(17–18), 1005–1009 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonnetier, É., Triki, F.: Asymptotic of the Green function for the diffraction by a perfectly conducting plane perturbed by a sub-wavelength rectangular cavity. Math. Methods Appl. Sci. 33(6), 772–798 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bouchitté, G., Schweizer, B.: Cloaking of small objects by anomalous localized resonance. Q. J. Mech. Appl. Math. 63(4), 437–463 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brandão, R., Holley, J.R., Schnitzer, O.: Boundary-layer effects on electromagnetic and acoustic extraordinary transmission through narrow slits. Proc. R. Soc. A 476, 20200444 (2020)

  10. Brandão, R., Schnitzer, O.: Asymptotic modeling of Helmholtz resonators including thermoviscous effects. Wave Motion 97, 102583 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cardone, G., Nazarov, S.A., Ruotsalainen, K.: Asymptotic behaviour of an eigenvalue in the continuous spectrum of a narrowed waveguide. Sb. Math. 203(2), 153 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cardone, G., Nazarov, S.A., Ruotsalainen, K.: Bound states of a converging quantum waveguide. Math. Mod. Numer. Anal. 47(1), 305–315 (2013)

  13. Cassier, M., Degiovanni, T., Guenneau, S., Vasquez, F.-G.: Active thermal cloaking and mimicking. Proc. R. Soc. A 477, 20200941 (2021)

    Article  MathSciNet  Google Scholar 

  14. Cassier, M., Milton, G.W.: Bounds on Herglotz functions and fundamental limits of broadband passive quasistatic cloaking. J. Math. Phys. 58(7), 071504 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cheer, J.: Active control of scattered acoustic fields: cancellation, reproduction and cloaking. J. Acoust. Soc. Am. 140(3), 1502–1512 (2016)

  16. Chen, H., Chan, C.T.: Acoustic cloaking and transformation acoustics. J. Phys. D Appl. Phys. 43(11), 113001 (2010)

    Article  Google Scholar 

  17. Chesnel, L., Heleine, J., Nazarov, S.A.: Design of a mode converter using thin resonant slits. Commun. Math. Sci. 20(2), 425–445 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chesnel, L., Nazarov, S.A.: Non reflection and perfect reflection via Fano resonance in waveguides. Commun. Math. Sci. 16(7), 1779–1800 (2018)

  19. Chesnel, L., Nazarov, S.A.: Exact zero transmission during the Fano resonance phenomenon in non-symmetric waveguides. Z. Angew. Math. Phys. 71(3), 1–13 (2020)

  20. Chesnel, L., Nazarov, S.A.: Design of an acoustic energy distributor using thin resonant slits. Proc. R. Soc. A 477, 20200896 (2021)

  21. Chesnel, L., Nazarov, S.A., Taskinen, J.: Surface waves in a channel with thin tunnels and wells at the bottom: non-reflecting underwater topography. Asymptot. Anal. 118(1–2), 81–122 (2020)

  22. Chesnel, L., Pagneux, V.: From zero transmission to trapped modes in waveguides. J. Phys. A Math. Theor. 52(16), 165304 (2019)

    Article  MathSciNet  Google Scholar 

  23. Gadyl’shin, R.R.: Characteristic frequencies of bodies with thin spikes. I. Convergence and estimates. Math. Notes 54(6), 1192–1199 (1993)

  24. Gadyl’shin, R.R.: On the eigenvalues of a “dumbbell with a thin handle’’. Izv. Math. 69(2), 265–329 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Goldstein, C.: A finite element method for solving Helmholtz type equations in waveguides and other unbounded domains. Math. Comput. 39(160), 309–324 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann, G.: Cloaking devices, electromagnetic wormholes, and transformation optics. SIAM Rev. 51(1), 3–33 (2009)

  27. Harari, I., Patlashenko, I., Givoli, D.: Dirichlet-to-Neumann maps for unbounded wave guides. J. Comput. Phys. 143(1), 200–223 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hecht, F.: New development in freefem++. J. Numer. Math., 20(3–4):251–265 (2012). http://www3.freefem.org/

  29. Holley, J.R., Schnitzer, O.: Extraordinary transmission through a narrow slit. Wave Motion 91, 102381 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Il’in, A.M.: Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Translation of Mathematical Monographs, vol. 102. AMS, Providence (1992)

    Google Scholar 

  31. Joly, P., Tordeux, S.: Matching of asymptotic expansions for wave propagation in media with thin slots I: the asymptotic expansion. SIAM Multiscale Model. Simul. 5(1), 304–336 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kohn, R.V., Lu, J., Schweizer, B., Weinstein, M.I.: A variational perspective on cloaking by anomalous localized resonance. Commun. Math. Phys. 328(1), 1–27 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kozlov, V.A., Maz’ya, V.G., Movchan, A.B.: Asymptotic analysis of a mixed boundary value problem in a multi-structure. Asymptot. Anal. 8(2), 105–143 (1994)

    MathSciNet  MATH  Google Scholar 

  34. Kriegsmann, G.A.: Complete transmission through a two-dimensional difffraction grating. SIAM J. Appl. Math. 65(1), 24–42 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lebbe, N.: Contribution in topological optimization and application to nanophotonics. PhD thesis, Université Grenoble Alpes (2019)

  36. Lebbe, N., Dapogny, C., Oudet, E., Hassan, K., Gliere, A.: Robust shape and topology optimization of nanophotonic devices using the level set method. J. Comput. Phys. 395, 710–746 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lebbe, N., Glière, A., Hassan, K., Dapogny, C., Oudet, E.: Shape optimization for the design of passive mid-infrared photonic components. Opt. Quant. Electron. 51(5), 166 (2019)

    Article  MATH  Google Scholar 

  38. Lee, H.-W.: Generic transmission zeros and in-phase resonances in time-reversal symmetric single channel transport. Phys. Rev. Lett. 82(11), 2358 (1999)

    Article  Google Scholar 

  39. Leonhardt, U.: Optical conformal mapping. Science 312(5781), 1777–1780 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lin, J., Shipman, S., Zhang, H.: A mathematical theory for Fano resonance in a periodic array of narrow slits. SIAM J. Appl. Math. 80(5), 2045–2070 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lin, J., Zhang, H.: Scattering and field enhancement of a perfect conducting narrow slit. SIAM J. Appl. Math. 77(3), 951–976 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lin, J., Zhang, H.: Scattering by a periodic array of subwavelength slits I: field enhancement in the diffraction regime. Multiscale Model. Simul. 16(2), 922–953 (2018)

    Article  MathSciNet  Google Scholar 

  43. Ma, G., Sheng, P.: Acoustic metamaterials: from local resonances to broad horizons. Sci. Adv. 2(2), e1501595 (2016)

    Article  Google Scholar 

  44. Maz’ya, V.G., Nazarov, S.A., Plamenevskiĭ, B.A.: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, vol. 1. Birkhäuser, Basel (2000). Translated from the original German 1991 edition

  45. Miller, D.A.B.: On perfect cloaking. Opt. Express 14(25), 12457–12466 (2006)

    Article  Google Scholar 

  46. Milton, G.W., Nicorovici, N.-A.P.: On the cloaking effects associated with anomalous localized resonance. Proc. R. Soc. A 462(2074), 3027–3059 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. Monticone, F., Alù, A.: Invisibility exposed: physical bounds on passive cloaking. Optica 3(7), 718–724 (2016)

    Article  Google Scholar 

  48. Nazarov, S.A.: Junctions of singularly degenerating domains with different limit dimensions 1. J. Math. Sci. (N.Y.) 80(5), 1989–2034 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  49. Nazarov, S.A.: The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes. Russ. Math. Surv. 54(5), 947–1014 (1999)

    Article  MATH  Google Scholar 

  50. Nazarov, S.A.: Asymptotic analysis and modeling of the jointing of a massive body with thin rods. J. Math. Sci. (N.Y.) 127(5), 2192–2262 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  51. Nazarov, S.A.: Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide. Theor. Math. Phys. 167(2), 606–627 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Nazarov, S.A.: Enforced stability of a simple eigenvalue in the continuous spectrum of a waveguide. Funct. Anal. Appl. 47(3), 195–209 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. Nazarov, S.A., Chesnel, L.: Abnormal transmission of waves through a thin canal connecting two acoustic waveguides. Dokl. Ross. Akad. Nauk. Fizika Tekhn. Nauki. 496, 22–27 (2021). English transl.: Doklady Physics. 2021. V. 66 (to appear)

  54. Nazarov, S.A., Chesnel, L.: Anomalies of propagation of acoustic waves in two semi-infinite cylinders connected by a thin flattened canal. Zh. Vychisl. Mat. i Mat. Fiz. 61(4), 666–683 (2021). English transl.: Comput. Math. Math. Phys. 61(4), 646–663 (2021)

  55. Nguyen, H.-M.: Cloaking via change of variables for the Helmholtz equation in the whole space. Comm. Pure Appl. Math. 63(11), 1505–1524 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  56. Nguyen, H.-M.: Cloaking an arbitrary object via anomalous localized resonance: the cloak is independent of the object. SIAM J. Math. Anal. 49(4), 3208–3232 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  57. Norris, A.N.: Acoustic cloaking theory. Proc. R. Soc. A 464(2097), 2411–2434 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  58. Norris, A.N.: Acoustic integrated extinction. Proc. R. Soc. A. 471(2177), 20150008 (2015)

    Article  Google Scholar 

  59. Norris, A.N.: Integral identities for reflection, transmission, and scattering coefficients. J. Acoust. Soc. Am. 144(4), 2109–2115 (2018)

    Article  Google Scholar 

  60. Norris, A.N., Amirkulova, F.A., Parnell, W.J.: Source amplitudes for active exterior cloaking. Inverse Probl. 28(10), 105002 (2012)

  61. O’Neill, J., Selsil, Ö., McPhedran, R.C., Movchan, A.B., Movchan, N.V.: Active cloaking of inclusions for flexural waves in thin elastic plates. Q. J. Mech. Appl. Math. 68(3), 263–288 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  62. Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312(5781), 1780–1782 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  63. Schnitzer, O.: Spoof surface plasmons guided by narrow grooves. Phys. Rev. B 96(8), 085424 (2017)

    Article  Google Scholar 

  64. Sohl, C., Gustafsson, M., Kristensson, G.: The integrated extinction for broadband scattering of acoustic waves. J. Acoust. Soc. Am. 122(6), 3206–3210 (2007)

    Article  Google Scholar 

  65. Van Dyke, M.: Perturbation Methods in Fluid Mechanics. The Parabolic Press, Stanford (1964)

  66. Vasquez, F.G., Milton, G.W., Onofrei, D.: Active exterior cloaking for the 2D Laplace and Helmholtz equations. Phys. Rev. Lett. 103(7), 073901 (2009)

    Article  MATH  Google Scholar 

  67. Vasquez, F.G., Milton, G.W., Onofrei, D.: Exterior cloaking with active sources in two dimensional acoustics. Wave Motion 48(6), 515–524 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of S.A. Nazarov was supported by the Ministry of Science and Higher Education of Russian Federation within the framework of the Russian State Assignment under contract No. FFNF-2021-0006. The authors wish to thank Lorenzo Scaglione who worked on parts of this article during its internship, in particular on the result leading to Proposition 3.6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Chesnel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: auxiliary results

Appendix: auxiliary results

Proof of Proposition 2.1. We reproduce the material of [4, Proposition 3.4]. Looking at the behavior of \(\mathbb {S}\overline{W}-W\) for \(|x|>d\) and using that \(\mathbb {S}\) is unitary (see relations (4)), one finds that \(\mathbb {S}\overline{W}-W\) is a vector of functions which solve the homogeneous problem (1) and which are exponentially decaying at infinity. In other words, \(\mathbb {S}\overline{W}-W\) is a vector of trapped modes. But since by definition the \(W^{\pm }\) are orthogonal to trapped modes for the \(\mathrm {L}^2(\Omega )\) inner product, we deduce that \(\mathbb {S}\overline{W}=W\).

Lemma 6.1

The constant \(C_{\Xi }\) appearing in the decomposition (14) of the function \(Y^1\) is real.

Proof

Since there holds \(\Delta Y^1=0\) in \(\Xi \), for all \(\kappa >0\), we have

$$\begin{aligned} 0=\int \limits _{\Xi ^\kappa } (Y^1-\overline{Y^1})\Delta Y^1-\Delta (Y^1-\overline{Y^1})Y^1\,\mathrm{d}\xi _x\mathrm{d}\xi _y \end{aligned}$$

with \(\Xi ^\kappa :=\{(\xi _x,\xi _y)\in \Xi ,\,\xi _y<0 \text{ and } |\xi |<\kappa \}\cup \{(\xi _x,\xi _y)\in (-1/2;1/2)\times [0;\kappa )\}\). Integrating by parts and taking the limit \(\kappa \rightarrow +\infty \), we get \(C_\Xi -\overline{C_\Xi }=0\). This shows that \(C_\Xi \) is real.\(\square \)

Lemma 6.2

The constant \(\Gamma \) corresponding to the constant behavior of \(\gamma \) at A (see (21)) is such that

$$\begin{aligned} \Im m\,(\omega \Gamma )=(|W^+(A)|^2+|W^-(A)|^2)/4. \end{aligned}$$

Proof

Since the function \(\gamma \) is outgoing, we have the expansion \(\gamma =s_{\pm }\mathrm {w}^\pm +\tilde{\gamma }\) for \(\pm x >d\) where \(s_{\pm }\in \mathbb {C}\) and where \(\tilde{\gamma }\) is exponentially decaying at infinity. Integrating by parts in

$$\begin{aligned} 0=\int \limits _{\Omega ^\kappa }(\Delta \gamma +\omega ^2\gamma )W^{\pm }-\gamma \,(\Delta W^{\pm } +\omega ^2W^{\pm })\,\mathrm{d}z, \end{aligned}$$

and taking the limit \(\kappa \rightarrow +\infty \) as in (17), we obtain

$$\begin{aligned} s_{\pm }=iW^{\mp }(A)/(2\omega ). \end{aligned}$$
(63)

On the other hand, integrating by parts in

$$\begin{aligned} 0=\int \limits _{\Omega ^\kappa }(\Delta \gamma +\omega ^2\gamma )\overline{\gamma }-\gamma \,(\Delta \overline{\gamma } +\omega ^2\overline{\gamma })\,\mathrm{d}z, \end{aligned}$$

and taking again the limit \(\kappa \rightarrow +\infty \), we obtain \(2\omega (|s_{-}|^2+|s_{+}|^2)-2\Im m\,\Gamma =0\). From (63), this yields the desired result.\(\square \)

Lemma 6.3

Let \(\gamma _j\), \(j=1,2\), be the functions introduced in (51). We have \(\gamma _1(A_2)=\gamma _2(A_1)\).

Proof

Integrating by parts in

$$\begin{aligned} 0=\int \limits _{\Omega ^\kappa }(\Delta \gamma _1 +\omega ^2\gamma _1)\gamma _2-\gamma _1\,(\Delta \gamma _2 +\omega ^2\gamma _2)\,\mathrm{d}z, \end{aligned}$$

using that for \(j=1,2\), there holds \(\partial _\nu \gamma _j=\delta _{A_j}\) on \(\partial \Omega \), and taking the limit \(\kappa \rightarrow +\infty \), we find \(\gamma _1(A_2)=\gamma _2(A_1)\).\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chesnel, L., Heleine, J. & Nazarov, S.A. Acoustic passive cloaking using thin outer resonators. Z. Angew. Math. Phys. 73, 98 (2022). https://doi.org/10.1007/s00033-022-01736-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01736-6

Keywords

Mathematics Subject Classification

Navigation