Skip to main content
Log in

Analysis of a reaction–diffusion system about West Nile virus with free boundaries in the almost periodic heterogeneous environment

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We put forward a reaction–diffusion cooperative system for the West Nile virus in a spatial heterogeneous and time almost periodic environment with free boundaries. The existence, uniqueness and regularity estimates of the global solution for this epidemic model are given. Focused on the effects of spatial heterogeneity and time almost periodicity, we introduce the principal Lyapunov exponent \(\lambda (t)\) dependent on t and get the initial infected critical size \(L^*\) which plays a vital part in analyzing the threshold dynamics and the long-time asymptotic behaviors of the solution. We build the spreading–vanishing dichotomy regimes of this model and obtain several criteria determining the spreading or vanishing. Our analysis result suggests that the solution converges to a positive time almost periodic function \(\left( U^*(x,t),V^*(x,t)\right) \) locally uniformly when the spreading occurs. We discover that the initial disease infected domain and the front expanding rate have momentous impacts on the permanence and extinction of the disease. Moreover, we give the lower and the upper bound estimates about the asymptotic spreading speeds of the double free fronts when the spreading happens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wonham, M.J., De-Camino-Beck, T., Lewis, M.A.: An epidemiological model for West Nile virus: invasion analysis and control applications. Proc. R. Soc. B Biol. Sci. 271(1538), 501–507 (2004)

    Article  Google Scholar 

  2. Cruz-Pacheco, G., Esteva, L., Monta-Hirose, J.A., Vargas, C.: Modelling the dynamics of West Nile Virus. Bull. Math. Biol. 67(6), 1157–1172 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bowman, C., Gumel, A.B., Driessche, P.v.d, Wu, J., Zhu, H.: A mathematical model for assessing control strategies against West Nile virus. Bull. Math. Biol. 67(5), 1107–1133 (2005)

  4. Abdelrazec, A., Lenhart, S., Zhu, H.: Transmission dynamics of West Nile virus in mosquitoes and corvids and non-corvids. J. Math. Biol. 68(6), 1553–1582 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, J., Huang, J., Beier, J., Cantrell, R., Cosner, C., Fuller, D., Zhang, G., Ruan, S.: Modeling and control of local outbreaks of West Nile virus in the United States. Discrete Contin. Dyn. Syst. 21(8), 2423–2449 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lewis, M., Rencławowicz, J., Driessche, P.V.D.: Traveling waves and spread rates for a West Nile virus model. Bull. Math. Biol. 68(1), 3–23 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Maidana, N.A., Yang, H.M.: Spatial spreading of West Nile Virus described by traveling waves. J. Theor. Biol. 258(3), 403–417 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, X., Friedman, A.: A free boundary problem for an elliptic–hyperbolic system: an application to tumor growth. SIAM J. Math. Anal. 35(4), 974–986 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lin, Z.: A free boundary problem for a predator–prey model. Nonlinearity 20(8), 1883–1892 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Du, Y., Lin, Z.: Spreading–vanishing dichotomy in the diffusive logistic model with a free boundary. SIAM J. Math. Anal. 42(1), 377–405 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, M.: On some free boundary problems of the prey–predator model. J. Differ. Equ. 256(10), 3365–3394 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, Y., Guo, S.: A SIS reaction–diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete Contin. Dyn. Syst. B 24(4), 1627–1652 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Liu, S., Huang, H., Wang, M.: A free boundary problem for a prey–predator model with degenerate diffusion and predator-stage structure. Discrete Contin. Dyn. Syst. B 25(5), 1649–1670 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Lin, Z., Zhu, H.: Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary. J. Math. Biol. 75(6–7), 1381–1409 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tarboush, A.K., Lin, Z., Zhang, M.: Spreading and vanishing in a West Nile virus model with expanding fronts. Sci. China Math. 60(5), 841–860 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cheng, C., Zheng, Z.: Dynamics and spreading speed of a reaction–diffusion system with advection modeling West Nile virus. J. Math. Anal. Appl. 493(1), 124507 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Allen, L.J.S., Bolker, B.M., Lou, Y., Nevai, A.L.: Asymptotic profiles of the steady states for an SIS epidemic reaction–diffusion model. Discrete Contin. Dyn. Syst. 21(1), 1–20 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhou, P., Xiao, D.: The diffusive logistic model with a free boundary in heterogeneous environment. J. Differ. Equ. 256(6), 1927–1954 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhao, J., Wang, M.: A free boundary problem of a predator–prey model with higher dimension and heterogeneous environment. Nonlinear Anal. Real World Appl. 16, 250–263 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, M.: The diffusive logistic equation with a free boundary and sign-changing coefficient. J. Differ. Equ. 258(4), 1252–1266 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ge, J., Lei, C., Lin, Z.: Reproduction numbers and the expanding fronts for a diffusion–advection SIS model in heterogeneous time-periodic environment. Nonlinear Anal. Real World Appl. 33, 100–120 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ding, W., Peng, R., Wei, L.: The diffusive logistic model with a free boundary in a heterogeneous time-periodic environment. J. Differ. Equ. 263(5), 2736–2779 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, M., Lin, Z.: A reaction–diffusion–advection model for Aedes aegypti mosquitoes in a time-periodic environment. Nonlinear Anal. Real World Appl. 46, 219–237 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Peng, R., Zhao, X.Q.: A reaction–diffusion SIS epidemic model in a time-periodic environment. Nonlinearity 25(5), 1451–1471 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, L., Wang, Z.C.: A time-periodic reaction–diffusion epidemic model with infection period. Zeitschrift Für Angewandte Mathematik Und Physik 67, 117 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shan, C., Fan, G., Zhu, H.: Periodic phenomena and driving mechanisms in transmission of West Nile virus with maturation time. J. Dyn. Differ. Equ. 32(2), 1003–1026 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shen, W., Yi, Y.: Convergence in almost periodic fisher and Kolmogorov models. J. Math. Biol. 37(1), 84–102 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Huang, J., Shen, W.: Speeds of spread and propagation for KPP models in time almost and space periodic media. SIAM J. Appl. Dyn. Syst. 8(3), 790–821 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, B.G., Zhao, X.Q.: Basic reproduction ratios for almost periodic compartmental epidemic models. J. Dyn. Differ. Equ. 25(2), 535–562 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, B.G., Li, W.T., Wang, Z.C.: A reaction–diffusion SIS epidemic model in an almost periodic environment. Zeitschrift Für Angewandte Mathematik Und Physik Zamp 66(6), 3085–3108 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Qiang, L., Wang, B.G., Wang, Z.C.: A reaction–diffusion epidemic model with incubation period in almost periodic environments. Eur. J. Appl. Math. 66, 1–24 (2020)

    Google Scholar 

  32. Zhao, X.Q.: Global attractivity in monotone and subhomogeneous almost periodic systems. J. Differ. Equ. 187(2), 494–509 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, M.: Existence and uniqueness of solutions of free boundary problems in heterogeneous environments. Discrete Contin. Dyn. Syst. B 24(2), 415–421 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Ladyzhenskaia, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and Quasi-linear Equations of Parabolic Type, vol. 23. American Mathematical Society (1968)

  35. Wang, M.: Nonlinear Second Order Parabolic Equations, vol. 1. CRC Press, Boca Raton (2021)

    Book  MATH  Google Scholar 

  36. Wang, M.: Sobolev Spaces. High Education Press, Beijing (2013).. ((in Chinese))

    Google Scholar 

  37. Dan, H.: Geometric Theory of Semilinear Parabolic Equations, vol. 840. Springer, Berlin (1981)

    MATH  Google Scholar 

  38. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44. Springer, Berlin (2012)

    MATH  Google Scholar 

  39. Shen, W., Yi, Y.: Almost Automorphic and Almost Periodic Dynamics in Skew-Product Semiflow. Memorirs of the American Mathematical Society (1998)

  40. Hutson, V., Shen, W., Vickers, G.T.: Estimates for the principal spectrum point for certain time-dependent parabolic operators. Proc. Am. Math. Soc. 129(6), 1669–1679 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mierczyński, J., Shen, W.: Lyapunov exponents and asymptotic dynamics in random Kolmogorov models. J. Evol. Equ. 4(3), 371–390 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Li, F., Liang, X., Shen, W.: Diffusive KPP equations with free boundaries in time almost periodic environments: I. Spreading and vanishing dichotomy. Discrete Contin. Dyn. Syst. 36(6), 3317–3338 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Fink, A.M.: Almost Periodic Differential Equations. Springer, Berlin (1974)

    Book  MATH  Google Scholar 

  44. Smith, H., Zhao, X.Q.: Robust persistence for semidynamical systems. Nonlinear Anal. Theory Methods Appl. 47(9), 6169–6179 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, Z., Nie, H., Du, Y.: Spreading speed for a West Nile virus model with free boundary. J. Math. Biol. 79(2), 1–34 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Li, F., Liang, X., Shen, W.: Diffusive KPP equations with free boundaries in time almost periodic environments: II. Spreading speeds and semi-wave solutions. J. Differ. Equ. 261(4), 2403–2445 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are supported by the NSF of China (Nos. 11671382, 12031020), CAS Key Project of Frontier Sciences (No. QYZDJ-SSW-JSC003), the Key Lab. of Random Complex Structures and Data Sciences CAS and National Center for Mathematics and Interdisciplinary Sciences CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengcheng Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, C., Zheng, Z. Analysis of a reaction–diffusion system about West Nile virus with free boundaries in the almost periodic heterogeneous environment. Z. Angew. Math. Phys. 73, 84 (2022). https://doi.org/10.1007/s00033-022-01729-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01729-5

Keywords

Mathematics Subject Classification

Navigation