Skip to main content
Log in

Influence of fear effect and predator-taxis sensitivity on dynamical behavior of a predator–prey model

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Experiments show that the fear of predators reduces the birth rate of the prey population, but it does not cause the extinction of the prey population. Even if the fear is sufficiently large, the prey can survive under the saturated fear cost. Moreover, the sensitivity of prey to predator will affect the population density of prey and predator. It is feasible to introduce the saturated fear cost and predator-taxis sensitivity into the predator–prey interactions model. In this paper, we obtain the threshold condition of the persistence for the proposed model and discuss all ecologically feasible equilibrium points and their stability in terms of the model parameters. Furthermore, when choose the fear level as bifurcation parameter, the model will arise single Hopf bifurcation point. However, when choose the predator-taxis sensitivity as bifurcation parameter, the model will arise two Hopf bifurcation points. In order to determine the stability of the limit cycle caused by Hopf bifurcation, the first Lyapunov number is calculated in detail. In addition, by the sensitivity analysis and the elasticity analysis, the saturated fear cost takes on the strong impact on the sensitivity for the model, and the predator death rate has a greater impact on the persistence of the model than the prey death rate. Our numerical illustration also shows that the predator-taxis sensitivity determines the success or failure of the predator invasion under appropriate fear level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Levin, S.A.: Dispersion and population interactions. Am. Nat. 108(960), 207–228 (1974)

    Article  Google Scholar 

  2. Berryman, A.A.: The orgins and evolution of predator–prey theory. Ecology 73(5), 1530–1535 (1992)

    Article  Google Scholar 

  3. Murray, J.D.: Mathematical Biology I: An Introduction. Springer, New York (2002)

    Book  Google Scholar 

  4. Cantrell, R.S., Cosner, C.: On the dynamics of predator–prey models with the Beddington–DeAngelis functional response. J. Math. Anal. Appl. 257(1), 206–222 (2001)

    Article  MathSciNet  Google Scholar 

  5. Kuang, Y.: Rich dynamics of Gause-type ratio-dependent predator–prey system. Fields Inst. Commun. 21, 325–337 (1999)

    MathSciNet  MATH  Google Scholar 

  6. Fan, M., Wang, Q., Zou, X.: Dynamics of a non-autonomous ratio-dependent predator–prey system. Proc. Roy. Soc. Edinb. A Math. 133(1), 97–118 (2003)

    Article  MathSciNet  Google Scholar 

  7. Hsu, S.B., Hwang, T.W., Kuang, Y.: Global dynamics of a predator–prey model with Hassell–Varley type functional response. Discrete Cont. Dyn. B 10(4), 857–871 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Liu, J., Liu, B., Lv, P., Zhang, T.: An eco-epidemiological model with fear effect and hunting cooperation. Chaos Solitons Fractals 142, 110494 (2021)

    Article  MathSciNet  Google Scholar 

  9. Preisser, E.L., Bolnick, D.I.: The many faces of fear: comparing the pathways and impacts of nonconsumptive predator effects on prey populations. PLoS ONE 3(6), e2465 (2008)

    Article  Google Scholar 

  10. Maerz, J.C., Panebianco, N.L., Madison, D.M.: Effects of predator chemical cues and behavioral biorhythms on foraging, activity of terrestrial salamanders. J. Chem. Ecol. 27(7), 1333–1344 (2001)

    Article  Google Scholar 

  11. Creel, S., Christianson, D.: Relationships between direct predation and risk effects. Trends Ecol. Evol. 23(4), 194–201 (2008)

    Article  Google Scholar 

  12. Cresswell, W.: Predation in bird populations. J. Ornithol. 152(1), 251–263 (2011)

    Article  Google Scholar 

  13. Pangle, K.L., Peacor, S.D., Johannsson, O.E.: Large nonlethal effects of an invasive invertebrate predator on zooplankton population growth rate. Ecology 88(2), 402–412 (2007)

    Article  Google Scholar 

  14. Altendorf, K.B., Laundré, J.W., López González, C.A., Brown, J.S.: Assessing effects of predation risk on foraging behavior of mule deer. J. Mammal. 82(2), 430–439 (2001)

    Article  Google Scholar 

  15. Wang, X., Zanette, L., Zou, X.: Modelling the fear effect in predator–prey interactions. J. Math. Biol. 73(5), 1179–1204 (2016)

    Article  MathSciNet  Google Scholar 

  16. Zanette, L.Y., White, A.F., Allen, M.C., Clinchy, M.: Perceived predation risk reduces the number of offspring songbirds produce per year. Science 334(6061), 1398–1401 (2011)

    Article  Google Scholar 

  17. Sarkar, K., Khajanchi, S.: Impact of fear effect on the growth of prey in a predator–prey interaction model. Ecol. Complex. 42, 100826 (2020)

    Article  Google Scholar 

  18. Sasmal, S.K., Takeuchi, Y.: Dynamics of a predator–prey system with fear and group defense. J. Math. Anal. Appl. 481(1), 123471 (2020)

    Article  MathSciNet  Google Scholar 

  19. Gard, T.C., Hallam, T.G.: Persistence in food webs-I Lotka–Volterra food chains. Bull. Math. Biol. 41(6), 877–891 (1979)

    MathSciNet  MATH  Google Scholar 

  20. Khajanchi, S.: Uniform persistence and global stability for a brain tumor and immune system interaction. Biophys. Rev. Lett. 12(04), 187–208 (2017)

    Article  Google Scholar 

  21. Verhulst, F.: Differential Equations and Dynamical Systems. Henri Poincaré. Springer, Boston, MA (2012)

    MATH  Google Scholar 

  22. Banerjee, M., Volpert, V.: Spatio-temporal pattern formation in Rosenzweig–Macarthur model: effect of nonlocal interactions. Ecol. Complex. 30, 2–10 (2017)

    Article  Google Scholar 

  23. Panday, P., Pal, N., Samanta, S., Tryjanowski, P., Chattopadhyay, J.: Dynamics of a stage-structured predator–prey model: cost and benefit of fear-induced group defense. J. Theor. Biol. 528, 110846 (2021)

    Article  MathSciNet  Google Scholar 

  24. Tripathi, J.P., Meghwani, S.S., Thakur, M., Abbas, S.: A modified Leslie–Gower predator–prey interaction model and parameter identifiability. Commun. Nonlinear Sci. 54, 331–346 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work is partially supported by the National Natural Science Foundation of China (Nos. 11975025, 12011530158); the Natural Science Foundation of Anhui Province of China (No. 2108085MA10); and the Key Project of Natural Science Research of Anhui Higher Education Institutions of China (Nos. KJ2020A0491, KJ2020A0492, KJ2019A0556).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiyong Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Wu, D., Shen, C. et al. Influence of fear effect and predator-taxis sensitivity on dynamical behavior of a predator–prey model. Z. Angew. Math. Phys. 73, 25 (2022). https://doi.org/10.1007/s00033-021-01659-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01659-8

Keywords

Mathematics Subject Classification

Navigation