Skip to main content
Log in

Asymptotic behavior of a quasilinear parabolic–elliptic–elliptic chemotaxis system with logistic source

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study the following quasilinear parabolic–elliptic–elliptic chemotaxis system with indirect signal production and logistic source

$$\begin{aligned} \left\{ \begin{aligned}&u_t=\nabla \cdot (D(u)\nabla u) -\nabla \cdot (S(u)\nabla v)+\mu (u-u^\gamma ) ,&\qquad \quad x\in \Omega ,\,t>0,\\&0=\Delta v- v+ w,&\qquad \quad x\in \Omega ,\,t>0,\\&0=\Delta w- w+ u,&\qquad \quad x\in \Omega ,\,t>0 \end{aligned} \right. \end{aligned}$$

under homogeneous Neumann boundary conditions in a smooth bounded domain \( \Omega \subset \mathbb {R}^n(n\ge 1)\), where \(\mu>0, \gamma >1\), and \(D, S\in C^2\,([0,\infty ))\) fulfilling \(D(s)\ge a_0(s+1)^{\alpha },\, |S(s)|\le b_0s(s+1)^{\beta -1}\) for all \(s\ge 0\) with \(a_0, b_0>0\) and \(\alpha ,\beta \in \mathbb {R} \) are constants. The purpose of this paper is to prove that if \(\beta \le \gamma -1\), the nonnegative classical solution (uvw) is global in time and bounded. In addition, if \(\mu >0 \) is sufficiently large, the globally bounded solution (uvw) satisfies

$$\begin{aligned} \Vert u(\cdot ,t)-1\Vert _{L^\infty (\Omega )}+\Vert v(\cdot ,t)-1\Vert _{L^\infty (\Omega )}+\Vert w(\cdot ,t)-1\Vert _{L^\infty (\Omega )} \rightarrow 0 \quad as \quad t\rightarrow \infty . \end{aligned}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baghaei, K., Hesaaraki, M.: Global existence and boundedness of classical solutions for a chemotaxis model with logistic source. C. R. Math. Acad. Sci. Paris 351, 585–591 (2013)

    Article  MathSciNet  Google Scholar 

  2. Bai, X., Winkler, M.: Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics. Indiana Univ. Math. J. 65, 553–583 (2016)

    Article  MathSciNet  Google Scholar 

  3. Cao, X.: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with logistic source. J. Math. Anal. Appl. 412, 181–188 (2014)

    Article  MathSciNet  Google Scholar 

  4. Cao, X.: Large time behavior in the logistic Keller–Segel model via maximal sobolev regularity. Discrete Contin. Dyn. Syst. Ser. B 22, 3369–3378 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Cao, X., Zheng, S.: Boundedness of solutions to a quasilinear parabolic–elliptic Keller–Segel system with logistic source. Math. Methods Appl. Sci. 37, 2326–2330 (2014)

    Article  MathSciNet  Google Scholar 

  6. Choi, Y.S., Wang, Z.A.: Prevention of blow-up by fast diffusion in chemotaxis. J. Math. Anal. Appl. 362, 553–564 (2010)

    Article  MathSciNet  Google Scholar 

  7. Herrero, M.A., Velázquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Sc. Norm. Super. Pisa Cl. Sci. 24, 633–683 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Hillen, T., Painter, K.: A users guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MathSciNet  Google Scholar 

  9. Horstmann, D.: From: until present: the Keller–Segel model in chemotaxis and its consequences, I. Jahresber. Deutsch. Math.-Verein. 105(2003), 103–165 (1970)

    MathSciNet  MATH  Google Scholar 

  10. Hu, B.R., Tao, Y.S.: To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production. Math. Models Methods Appl. Sci. 26, 2111–2128 (2016)

    Article  MathSciNet  Google Scholar 

  11. Ishida, S., Seki, K., Yokota, T.: Boundedness in quasilinear Keller–Segel systems of parabolic-parabolic type on non-convex bounded domains. J. Differ. Equ. 256, 2993–3010 (2014)

    Article  MathSciNet  Google Scholar 

  12. Ishida, S., Yokota, T.: Blow-up in finite or infinite time for quasilinear degenerate Keller–Segel systems of parabolic-parabolic type. Discrete Contin. Dyn. Syst. Ser. B 18, 2569–2596 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol. 26, 399–415 (1970)

    Article  MathSciNet  Google Scholar 

  14. Laurencot, P.: Global bounded and unbounded solutions to a chemotaxis system with indirect signal production. Discrete Contin. Dyn. Syst. Ser. B 24, 6419–6444 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Li, X., Xiang, Z.: Boundedness in quasilinear Keller–Segel equations with nonlinear sensitivity and logistic source. Discrete Contin. Dyn. Syst. Ser. A 35, 3503–3531 (2015)

    Article  MathSciNet  Google Scholar 

  16. Li, X.: Global existence and boundedness of a chemotaxis model with indirect production and general kinetic function. Z. Angew. Math. Phys. 71, 96–117 (2020)

    Article  MathSciNet  Google Scholar 

  17. Nagai, T.: Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 5, 581–601 (1995)

    MathSciNet  MATH  Google Scholar 

  18. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. 40, 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller–Segel equations. Funkcial. Ekvac. 44, 441–469 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    Article  MathSciNet  Google Scholar 

  21. Tao, Y., Winkler, M.: Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production. J. Eur. Math. Soc. 19, 3641–3678 (2017)

    Article  MathSciNet  Google Scholar 

  22. Tello, J.I., Winkler, M.: A chemotaxis system with logistic source. Commun. Partial Differ. Equ. 32, 849–877 (2007)

    Article  MathSciNet  Google Scholar 

  23. Viglialoro, G.: Boundedness properties of very weak solutions to a fully parabolic chemotaxis-system with logistic source. Nonlinear Anal. Real World Appl. 34, 520–535 (2017)

    Article  MathSciNet  Google Scholar 

  24. Viglialoro, G.: Very weak global solutions to a parabolic parabolic chemotaxis-system with logistic source. J. Math. Anal. Appl. 439, 197–212 (2016)

    Article  MathSciNet  Google Scholar 

  25. Wang, Y.L.: A quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic type with logistic source. J. Math. Anal. Appl. 441, 259–292 (2016)

    Article  MathSciNet  Google Scholar 

  26. Wang, W.: A quasilinear fully parabolic chemotaxis system with indirect signal production and logistic source. J. Math. Anal. Appl. 477, 488–522 (2019)

    Article  MathSciNet  Google Scholar 

  27. Winkler, M.: Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity. Math. Nachr. 283, 1664–1673 (2010)

    Article  MathSciNet  Google Scholar 

  28. Winkler, M.: Aggregation vs global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MathSciNet  Google Scholar 

  29. Winkler, M.: Attractiveness of constant states in logistic-type Keller–Segel systems involving subquadratic growth restrictions. Adv. Nonlinear Stud. 20, 795–817 (2020)

    Article  MathSciNet  Google Scholar 

  30. Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35, 1516–1537 (2010)

    Article  MathSciNet  Google Scholar 

  31. Winkler, M.: Chemotaxis with logistic source: very weak global solutions and their boundedness properties. J. Math. Anal. Appl. 348, 708–729 (2008)

    Article  MathSciNet  Google Scholar 

  32. Winkler, M.: Does a volume-filling effect always prevent chemotactic collapse? Math. Methods Appl. Sci. 33, 12–24 (2010)

    Article  MathSciNet  Google Scholar 

  33. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    Article  MathSciNet  Google Scholar 

  34. Winkler, M.: Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation. Z. Angew. Math. Phys. 69, 40–65 (2018)

    Article  MathSciNet  Google Scholar 

  35. Winkler, M.: Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening. J. Differ. Equ. 257, 1056–1077 (2014)

    Article  MathSciNet  Google Scholar 

  36. Winkler, M., Djie, K.C.: Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect. Nonlinear Anal. 72, 1044–1064 (2010)

    Article  MathSciNet  Google Scholar 

  37. Zhang, Q.S., Li, Y.X.: An attraction-repulsion chemotaxis system with logistic source. Z. Angew. Math. Mech. 96(5), 570–584 (2016)

    Article  MathSciNet  Google Scholar 

  38. Zhang, W.J., Liu, S.Y., Niu, P.C.: Asymptotic behavior in a quasilinear chemotaxis-growth system with indirect signal production. J. Math. Anal. Appl. 486, 1–13 (2020)

    Article  MathSciNet  Google Scholar 

  39. Zhang, W.J., Niu, P.C., Liu, S.Y.: Large time behavior in a chemotaxis model with logistic growth and indirect signal production. Nonlinear Anal. Real World Appl. 50, 484–497 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The paper is supported by the National Science Foundation of China (11301419) and the Research and Innovation Team of China West Normal University (CXTD2020-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongping Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Li, Z. Asymptotic behavior of a quasilinear parabolic–elliptic–elliptic chemotaxis system with logistic source. Z. Angew. Math. Phys. 73, 22 (2022). https://doi.org/10.1007/s00033-021-01655-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01655-y

Keywords

Mathematics Subject Classification

Navigation