Skip to main content
Log in

Equilibrium problem for elastic plate with thin rigid inclusion crossing an external boundary

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The paper concerns an equilibrium problem for an elastic plate with a thin rigid inclusion. Both vertical and horizontal displacements of the plate are considered in the frame of the model. It is assumed that the inclusion crosses the external boundary of the plate. Moreover, the inclusion is delaminated from the plate which leads to appearance of a crack between the inclusion and the plate. To provide a mutual nonpenetration between crack faces, we consider nonlinear boundary conditions with unknown set of a contact. We prove a solution existence of the equilibrium problem and analyze an inverse problem with unknown elasticity tensor. To formulate the inverse problem, additional data are imposed to be determined from a boundary measurement. An existence of a solution to the inverse problem is proved, and stability properties are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Eskin, G., Ralston, J.: On the inverse boundary value problem for linear isotropic elasticity. Inverse Probl. 18(3), 907–921 (2002). https://doi.org/10.1088/0266-5611/18/3/324

    Article  MathSciNet  MATH  Google Scholar 

  2. Gao, Y., Ricoeur, A., Zhang, L.-L., Yang, L.-Z.: Crack solutions and weight functions for plane problems in three-dimensional quasicrystals. Arch. Appl. Mech. 84(8), 1103–1115 (2014). https://doi.org/10.1007/s00419-014-0868-4

    Article  Google Scholar 

  3. Gaudiello, A., Panasenko, G., Piatnitski, A.: Asymptotic analysis and domain decomposition for a biharmonic problem in a thin multistructure. Commun. Contemp. Math. 18(5), 1550057 (2016). https://doi.org/10.1142/S0219199715500571

    Article  MathSciNet  MATH  Google Scholar 

  4. Gaudiello, A., Gómez, D., Pérez-Martínez, M.-E.: Asymptotic analysis of the high frequencies for the Laplace operator in a thin T-like shaped structure. J. Math. Pures Appl. 134, 299–327 (2020). https://doi.org/10.1016/j.matpur.2019.06.005

    Article  MathSciNet  MATH  Google Scholar 

  5. Ikehata, M.: Reconstruction of inclusion from boundary measurements. J. Inverse Ill-Posed Probl. 10(1), 37–66 (2002). https://doi.org/10.1515/jiip.2002.10.1.37

    Article  MathSciNet  MATH  Google Scholar 

  6. Itou, H., Kovtunenko, V., Rajagopal, K.: Nonlinear elasticity with limiting small strain for cracks subject to non-penetration. Math. Mech. Solids 22(6), 1334–1346 (2017). https://doi.org/10.1177/1081286516632380

    Article  MathSciNet  MATH  Google Scholar 

  7. Jadamba, B., Khan, A., Racitic, F.: On the inverse problem of identifying Lamé coefficients in linear elasticity. Comput. Math. Appl. 56(2), 431–443 (2008). https://doi.org/10.1016/j.camwa.2007.12.016

    Article  MathSciNet  MATH  Google Scholar 

  8. Khludnev, A.M., Kovtunenko, V.A.: Analysis of Cracks in Solids. WIT Press, Southampton, Boston (2000)

    Google Scholar 

  9. Khludnev, A.M.: Elasticity Problems in Non-smooth Domains. Fizmatlit, Moscow (2010)

    Google Scholar 

  10. Khludnev, A.M., Leugering, G.: On Timoshenko thin elastic inclusions inside elastic bodies. Math. Mech. Solids 20(5), 495–511 (2015). https://doi.org/10.1177/1081286513505106

    Article  MathSciNet  MATH  Google Scholar 

  11. Khludnev, A., Faella, L., Perugia, C.: Optimal control of rigidity parameters of thin inclusions in composite materials. Z. Angew. Math. Phys. 68, 47 (2017). https://doi.org/10.1007/s00033-017-0792-x

    Article  MathSciNet  MATH  Google Scholar 

  12. Khludnev, A.M.: Inverse problems for elastic body with closely located thin inclusions. Z. Angew. Math. Phys. 70, 134 (2019). https://doi.org/10.1007/s00033-019-1179-y

    Article  MathSciNet  MATH  Google Scholar 

  13. Khludnev, A.M.: On thin inclusions in elastic bodies with defects. Z. Angew. Math. Phys. 70, 45 (2019). https://doi.org/10.1007/s00033-019-1091-5

    Article  MathSciNet  MATH  Google Scholar 

  14. Khludnev, A.M.: Inverse problem for elastic body with thin elastic inclusion. J. Inverse Ill-posed Probl. 28(2), 195–209 (2020). https://doi.org/10.1515/jiip-2019-0075

    Article  MathSciNet  MATH  Google Scholar 

  15. Khludnev, A.M., Popova, T.S.: Equilibrium problem for elastic body with delaminated T-shape inclusion. J. Comput. Appl. Math. 376, 112870 (2020). https://doi.org/10.1016/j.cam.2020.112870

    Article  MathSciNet  MATH  Google Scholar 

  16. Khludnev, A., Corbo Esposito, A., Faella, L.: Optimal control of parameters for elastic body with thin inclusions. J. Opt. Theory Appl. 184(1), 293–314 (2020). https://doi.org/10.1007/s10957-019-01620-w

    Article  MathSciNet  MATH  Google Scholar 

  17. Knowles, I.: Parameter identification for elliptic problems. J. Comput. Appl. Math. 131(1), 175–194 (2001). https://doi.org/10.1016/S0377-0427(00)00275-2

    Article  MathSciNet  MATH  Google Scholar 

  18. Kovtunenko, V.A., Leugering, G.: A shape-topological control problem for nonlinear crack—defect interaction: the anti-plane variational model. SIAM J. Control Optim. 54, 1329–1351 (2016). https://doi.org/10.1137/151003209

    Article  MathSciNet  MATH  Google Scholar 

  19. Lazarev, N.P.: Optimal control of the thickness of a rigid inclusion in equilibrium problems for inhomogeneous two-dimensional bodies with a crack. Z. Angew. Math. Mech. 96(4), 509–518 (2016). https://doi.org/10.1002/zamm.201500128

    Article  MathSciNet  Google Scholar 

  20. Lazarev, N.P., Popova, T.S., Rogerson, G.A.: Optimal control of the radius of a rigid circular inclusion in inhomogeneous two-dimensional bodies with cracks. Z. Angew. Math. Phys. 69, 53 (2018). https://doi.org/10.1007/s00033-018-0949-2

    Article  MathSciNet  MATH  Google Scholar 

  21. Lazarev, N.P., Itou, H.: Optimal location of a rigid inclusion in equilibrium problems for inhomogeneous Kirchhoff–Love plates with a crack. Math. Mech. Solids 24(12), 3743–3752 (2019). https://doi.org/10.1177/1081286519850608

    Article  MathSciNet  MATH  Google Scholar 

  22. Mallick, P.: Fiber-reinforced Composites. Materials, Manufacturing, and Design. Marcel Dekker, New York (1993)

    Google Scholar 

  23. Nakamura, G., Uhlmann, G.: Identification of Lamé parameters by boundary measurements. Am. J. Math. 115(5), 1161–1187 (1993). https://doi.org/10.2307/2375069

    Article  MATH  Google Scholar 

  24. Nakamura, G., Uhlmann, G.: Global uniqueness for an inverse boundary value problem arising in elasticity. Invent. Math. 118, 457–474 (1994). https://doi.org/10.1007/BF01231541

    Article  MathSciNet  MATH  Google Scholar 

  25. Rudoy, E.M.: Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body. Z. Angew. Math. Phys. 66, 1923–1937 (2015). https://doi.org/10.1007/s00033-014-0471-0

    Article  MathSciNet  MATH  Google Scholar 

  26. Rudoy, E., Shcherbakov, V.: First-order shape derivative of the energy for elastic plates with rigid inclusions and interfacial cracks. Appl. Math. Optim. (2020). https://doi.org/10.1007/s00245-020-09729-5

    Article  Google Scholar 

  27. Saccomandi, G., Beatty, M.: Universal relations for fiber-reinforced elastic materials. Math. Mech. Solids 7(1), 95–110 (2002). https://doi.org/10.1177/1081286502007001226

    Article  MathSciNet  MATH  Google Scholar 

  28. Shcherbakov, V.V.: Optimal control of rigidity parameter of thin inclusions in elastic bodies with curvilinear cracks. J. Math. Sci. 203(4), 591–604 (2014). https://doi.org/10.1007/s10958-014-2161-z

    Article  MathSciNet  Google Scholar 

  29. Shcherbakov, V.V.: Shape optimization of rigid inclusions for elastic plates with cracks. Z. Angew. Math. Phys. 67, 71 (2016). https://doi.org/10.1007/s00033-016-0666-7

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhao, G., Hao, W., Sheng, X., Luo, Y., Guo, G.: Study of the interaction of matrix crack with inclusions of different shapes using the method of caustic. Arch. Appl. Mech. 87, 1427–1438 (2017). https://doi.org/10.1007/s00419-017-1261-x

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Mathematical Center in Akademgorodok under agreement No. 075-15-2019-1613 with the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Khludnev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khludnev, A., Fankina, I. Equilibrium problem for elastic plate with thin rigid inclusion crossing an external boundary. Z. Angew. Math. Phys. 72, 121 (2021). https://doi.org/10.1007/s00033-021-01553-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01553-3

Keywords

Mathematics Subject Classification

Navigation