Skip to main content
Log in

A contact problem for an elastic plate with a thin rigid inclusion

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

Under study is an equilibrium problem for a plate under the influence of external forces. The plate is assumed to have a thin rigid inclusion that reaches the boundary at the zero angle and partially contacts a rigid body. On the inclusion face, there is a delamination. We consider the complete Kirchhoff–Love model, where the unknown functions are the vertical and horizontal displacements of the middle surface points of the plate. We present differential and variational formulations of the problem and prove the existence and uniqueness of a solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundary (Nauka, Moscow, 1991) [in Russian].

    MATH  Google Scholar 

  2. N. F. Morozov, Mathematical Problems of Crack Theory (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  3. A. M. Khludnev, Elasticity Problems in Nonsmooth Domains (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  4. V. V. Shcherbakov, “Existence of anOptimal Shape of the Thin Rigid Inclusions in the Kirchhoff–Love Plate,” Sibirsk. Zh. Industr. Mat. 13 (4), 142–151 (2013) [J. Appl. Indust. Math. 8 (1), 97–105 (2014)].

    MathSciNet  MATH  Google Scholar 

  5. N. V. Neustroeva, “A Rigid Inclusion in the Contact Problem for Elastic Plates,” Sibirsk. Zh. Industr. Mat. 12 (4), 92–105 (2009) [J. Appl. Indust. Math. 4 (4), 526–538 (2010)].

    MathSciNet  MATH  Google Scholar 

  6. E. M. Rudoy, “Differentiation of the Energy Functionals with Respect to the Domain Shape in Elasticity Theory for Bodies with Rigid Inclusions and Curvilinear Cracks,” Vestnik Novosib. Gos. Univ. Ser. Mat. Mekh. Inform. 12 (2), 108–122 (2012).

    Google Scholar 

  7. V. A. Kovtunenko, “Solution of the Problem of Optimal Cut in an Elastic Beam,” Prikl. Mekh. Tekhn. Fiz. 40 (5), 149–157 (1999).

    MathSciNet  MATH  Google Scholar 

  8. A. M. Khludnev, “Thin Inclusions in Elastic Bodies Crossing an External Boundary,” Z. Angew. Math. Mech. 95 (11), 1256–1267 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. M. Khludnev and G. R. Leugering, “On Timoshenko Thin Elastic Inclusions Inside Elastic Bodies,” Math. Mech. of Solids 20 (5), 495–511 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  10. V. A. Kovtunenko, “Variational and Boundary Value Problems in the Presence of Friction on the Inner Boundary,” Sibirsk. Mat. Zh. 39 (5), 1060–1073 (1998) [SiberianMath. J. 39 (5), 913–926 (1998)].

    MathSciNet  MATH  Google Scholar 

  11. E. M. Rudoy, “Differentiation of the Energy Functionals in the Problem on a CurvilinearCrack with a Possible Contact of Faces,” Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela No. 6, 113–127 (2007).

    Google Scholar 

  12. N. V. Neustroeva, “Unilateral Contact of Elastic Plates to Rigid Inclusion,” Vestnik Novosib. Gos. Univ. Ser. Mat. Mekh. Inform. 9 (4), 51–64 (2009).

    MATH  Google Scholar 

  13. N. P. Lazarev and T. S. Popova, “Variational Equilibrium Problem for a Plate with a Vertical Crack with a Geometrically Nonlinear Nonpenetration Condition,” Vestnik Novosib. Gos. Univ. Ser. Mat. Mekh. Inform. 11 (2), 77–88 (2011).

    MATH  Google Scholar 

  14. A. M. Khludnev, “Thin Rigid Inclusions with Delaminations in Elastic Plates,” European J. Mech. A/Solids. 32, 69–75 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  15. T. A. Rotanova, “Contact Problem for Plates with Rigid Inclusions Intersecting the Boundary,” Vestnik Tomsk. Gos. Univ. Ser. Mat. Mekh. No. 3, 99–107 (2010).

    Google Scholar 

  16. T. A. Rotanova, “On Statements and Solvability of The Problems on Contact of Two Plates with Rigid Inclusions,” Sibirsk. Zh. Industr. Mat. 15 (2), 107–118 (2012).

    MathSciNet  MATH  Google Scholar 

  17. A. M. Khludnev, “Contact Problems for Elastic Bodies with Rigid Inclusions,” Quart. Appl. Math. 70, 269–284 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. M. Khludnev, “On Bending an Elastic Plate with a Delaminated Thin Rigid Inclusion,” Sibirsk. Zh. Industr. Mat. 14 (1), 114–126 (2011) [J. Appl. Indust. Math. 5 (4), 582–594 (2011)].

    MathSciNet  MATH  Google Scholar 

  19. N. P. Lazarev, “Fictitious Domain Method in the Equilibrium Problem of the Timoshenko Plate Contacting with a Rigid Obstacle,” Vestnik Novosib. Gos. Univ. Ser. Mat. Mekh. Inform. 13 (1), 91–104 (2013).

    MATH  Google Scholar 

  20. K.-H. Hoffmann and A. M. Khludnev, “Fictitious Domain Method for the Signorini Problem in a Linear Elasticity,” Adv. Math. Sci. Appl. (2004) 14, 465–481.

    MathSciNet  MATH  Google Scholar 

  21. N. A. Nikolaeva, “Fictitious Domain Method for the Signorini Problem on Equilibriumof the Kirchhoff–Love Plate,” Vestnik Novosib. Gos. Univ. Ser. Mat. Mekh. Inform. 15 (3), 78–90 (2015).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Fankina.

Additional information

Original Russian Text © I.V. Fankina, 2016, published in Sibirskii Zhurnal Industrial’noi Matematiki, 2016, Vol. XIX, No. 3, pp. 90–98.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fankina, I.V. A contact problem for an elastic plate with a thin rigid inclusion. J. Appl. Ind. Math. 10, 333–340 (2016). https://doi.org/10.1134/S1990478916030030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478916030030

Keywords

Navigation