Skip to main content
Log in

On a fully parabolic singular chemotaxis-(growth) system with indirect signal production or consumption

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper deals with a fully parabolic singular chemotaxis-(growth) system with indirect signal production or consumption

$$\begin{aligned} \left\{ \begin{aligned}&u_t=\Delta u-\chi \nabla \cdot \left( \frac{u}{v}\nabla v\right) +f(u),&(x,t)\in \Omega \times (0,\infty ), \\&v_t=\Delta v+h(v,w),&(x,t)\in \Omega \times (0,\infty ), \\&w_t=\Delta w- w+u,&(x,t)\in \Omega \times (0,\infty ), \end{aligned} \right. \end{aligned}$$

under homogeneous Neumann boundary conditions in a smooth convex bounded domain \(\Omega \subset {\mathbb {R}}^{2}\), where \(\chi >0\). When \(f(u)=0\), \(h(v,w)=-v+w\), we prove that the solution (uvw) of this model is globally uniformly bounded in time and exponentially converges to the steady state \((\overline{u_{0}},\overline{u_{0}},\overline{u_{0}})\) in the norm of \(L^{\infty }(\Omega )\) provided that \(\chi <\chi _{0}\) with \(\chi _{0}>0\), where \(\overline{u_{0}}:=\frac{1}{|\Omega |}\int _{\Omega }u_{0}(x)\mathrm{d}x\). Moreover, in the case of \(f(u)=ru-\mu u^{2}\), \(h(v,w)=-v+w\), where \(r\in {\mathbb {R}}\), and \(\mu >0\), we obtain the global existence of solutions for this system. Furthermore, under the conditions of \(f(u)=ru-\mu u^{2}\), \(h(v,w)=-vw\) and \(\mu >0\), \(r>0\), the solution (uvw) is also global in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aida, M., Osaka, K., Tsujikawa, T., Yagi, A., Mimura, M.: Chemotaxis and growth system with singular sensitivity function. Nonlinear Anal. Real World Appl. 6, 323–336 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bai, X., Winkler, M.: Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics. Indiana Univ. Math. J. 65, 553–583 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Black, T., Lankeit, J., Mizukami, M.: Stabilization in the Keller-Segel system with signal-dependent sensitivity. Appl. Anal. 99, 1–15 (2019)

  4. Ding, M., Wang, W.: Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete Contin. Dyn. Syst. Ser. B 24, 4665–4684 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Feireisl, E., Laurencot, P., Petzeltovo, H.: On convergence to equilibria for the Keller-Segel chemotaxis model. J. Differ. Equ. 236, 551–569 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fuest, M.: Analysis of a chemotaxis model with indirect signal absorption. J. Differ. Equ. 267, 4778–4806 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fujie, K.: Boundedness of solutions to parabolic-elliptic Keller-Segel systems with signal-dependent sensitivity. Math. Methods Appl. Sci. 38, 1212–1224 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fujie, K.: Boundedness in a fully parabolic chemotaxis system with singular sensitivity. J. Math. Anal. Appl. 424, 675–684 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fujie, K., Senba, T.: Application of an Adams type inequality to a two-chemical substances chemotaxis system. J. Differ. Equ. 263, 88–148 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fujie, K., Winkler, M., Yokota, T.: Blow-up prevention by logistic sources in a parabolic-elliptic Keller-Segel system with singular sensitivity. Nonliear Anal. 109, 56–71 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gajewski, H., Zacharias, K.: Global behavior of a reaction-diffusion system modelling chemotaxis. Math. Nach. 195, 77–144 (1998)

    Article  MATH  Google Scholar 

  12. Herrero, M.A., Velázquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Ann Scuo. Norm. Sup Pisa 24, 633–683 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Hillen, T., Painter, K.J.: Convergence of a cancer invasion model to a logistic chemotaxis model. Math. Models Methods Appl. Sci 1, 165–198 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ 215, 52–107 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Issa, T.B., Shen, W.: Pointwise persistence in full chemotaxis models with logistic source on bounded heterogeneous environments. J. Math. Anal. Appl. 490, 124204 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theo. Biol. 26, 399–415 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lankeit, J.: Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion. J. Differ. Equ. 262, 4052–4084 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lankeit, J.: A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity. Math. Methods Appl. Sci. 39, 394–404 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lankeit, J., Winkler, M.: A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: global solvability for large nonradial data. Nonl. Diff. Equ. Appl. 24, 1–33 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Li, H., Tao, Y.: Boundedness in a chemotaxis system with indirect signal production and generalized logistic source. Appl. Math. Lett. 77, 108–113 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Manásevich, R., Phan, Q., Souplet, P.: Global existence of solutions for a chemotaxis-type system arising in crime modelling. Eur. J. Appl. Math. 24, 273–296 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nagai, T., Senba, T.: Behavior of radially symmetric solutions of a system related to chemotaxis. Nonlinear Anal. 30, 3837–3842 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funk. Ekva. 40, 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  24. Nirenberg, L.: An extended interpolation inequality. Ann Scuo. Norm. Sup Pisa 20, 733–737 (1966)

    MathSciNet  MATH  Google Scholar 

  25. Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller-Segel equations. Funk. Ekva. 44, 441–469 (2001)

    MathSciNet  MATH  Google Scholar 

  26. Qiu, S., Mu, C., Wang, L.: Boundedness in the higher-dimensional quasilinear chemotaxis-growth system with indirect attractant production. Comput. Math. Appl. 75, 3213–3223 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Stinner, C., Surulescu, C., Winkler, M.: Global weak solutions in a PDE-ODE system modeling muliscale cancer cell invasion. SIMA J. Math. Anal. 46, 1969–2007 (2014)

    Article  MATH  Google Scholar 

  28. Stinner, C., Winkler, M.: Global weak solutions in a chemotaxis system with large singular sensitivity. Nonl. Anal. Real World Appl. 12, 3727–3740 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Strohm, S., Tyson, R.C., Powell, J.A.: Pattern formation in a model for mountain pine beetle dispersal: linking model predictions to data. Bull. Math. Biol. 75, 1778–1797 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tao, Y., Winkler, M.: Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production. J. Eur. Math. Soc. 19, 3641–3678 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, W.: The logistic chemotaxis system with singular sensitivity and signal absorption in dimension two. Nonl. Anal. Real World Appl. 50, 532–561 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, W.: A quasilinear fully parabolic chemotaxis system with indirect signal production and logistic source. J. Math. Anal. Appl. 477, 488–522 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, Z., Xiang, Z., Yu, P.: Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis. J. Differ. Equ. 260, 2225–2258 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Willie, R., Zheng, P., Parumasur, N., Mu, C.: Asymptotic and stability dynamics of an HIV-1-Cytotoxic T Lymphocytes (CTL) Chemotaxis Model. J. Nonlinear Sci. 30, 1055–1080 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Winkler, M., Yokota, T.: Stabilization in the logarithmic Keller-Segel system. Nonlinear Anal. 170, 123–141 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Winkler, M.: The two-dimensional Keller-Segel system with singular sensitivity and singal absorption: Global large-data solutions and their relaxtion properties. Math. Models Methods Appl. Sci 26, 987–1024 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Winkler, M.: Global solutions in a fully parabolic chemotaxis system with singular sensitivity. Math. Meth. Appl. Sci. 34, 176–190 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Winkler, M., Aggregation, V.S.: global diffusion behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MATH  Google Scholar 

  40. Winkler, M., Yokota, T.: Stabilization in the logarithmic Keller–Segel system. Nonl. Anal. 170, 123–141 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, W., Niu, P., Liu, S.: Large time behavior in chemotaixs model with logistic growth and indirecct signal production. Nonl. Anal. Real World Appl. 50, 484–497 (2019)

    Article  MATH  Google Scholar 

  42. Zhao, X., Zheng, S.: Global boundedness to a chemotaxis system with singular sensitivity and logistic source. Z. Angew. Math. Phys. 68, 2 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhao, X., Zheng, S.: Asymptotic behavior to a chemotaxis consumption system with singular sensitivity. Math. Meth. Appl. Sci. 41, 2615–2624 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhao, X., Zheng, S.: Global existence and asymptotic behavior to a chemotaxis-consumption system with singular sensitivity and logistic source. Nonl. Anal. Real World Appl. 42, 120–139 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang, W., Niu, P., Liu, S.: Large time behavior in a chemotaxis model with logistic growth and indirect signal production. Nonl. Anal. Real World Appl. 50, 484–497 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zheng, P.: Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete Contin. Dyn. Syst. Ser. A 41, 1207–1223 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zheng, P., Mu, C., Willie, R., Hu, X.: Global asymptotic stability of steady states in a chemotaxis-growth system with singular sensitivity. Comput. Math. Appl. 75, 1667–1675 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zheng, P., Mu, C., Hu, X., Zhang, Q.: Global boundedness in a quasilinear chemotaxis system with signal-dependent sensitivity. J. Math. Anal. Appl. 428, 508–524 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zheng, P., Mu, C., Wang, L., Li, L.: Boundedness and asymptotic behavior in a fully parabolic chemotaxis-growth system with signal-dependent sensitivity. J. Evol. Equ. 17, 909–929 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zheng, P., Willie, R., Mu, C.: Global boundedness and stabilization in a two competing species chemotaxis-fluid system with two chemicals. J. Dyn. Differ. Equ. 32, 1371–1399 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zheng, P., Xing, J.: Boundedness and large-time behavior for a two-dimensional quasilinear chemotaxis-growth system with indirect signal consumption. Z. Angew. Math. Phys. 71, 98 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to deeply thank the editors and reviewers for their insightful and constructive comments. This work is partially supported by National Natural Science Foundation of China (Grant Nos: 11601053, 11526042), Natural Science Foundation of Chongqing (Grant No. cstc2019jcyj-msxmX0082) and South Africa-China Young Scientist Exchange Programme, 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, J., Zheng, P., Xiang, Y. et al. On a fully parabolic singular chemotaxis-(growth) system with indirect signal production or consumption. Z. Angew. Math. Phys. 72, 105 (2021). https://doi.org/10.1007/s00033-021-01534-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01534-6

Mathematics Subject Classification

Keywords

Navigation