Skip to main content
Log in

Modified scattering for higher-order nonlinear Hartree-type equations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We study the Cauchy problem for the higher-order nonlinear 3D Hartree-type equation

$$\begin{aligned} \left\{ \begin{array} [c]{ll} i\partial _{t}u+\frac{1}{2}\Delta u-\frac{1}{4}\Delta ^{2}u=\left( \left| x\right| ^{-1}*\left| u\right| ^{2}\right) u,&{}{}\quad t>0, x\in {\mathbb {R}}^{3},\\ u\left( 0,x\right) =u_{0}\left( x\right) ,&{}{}\quad x\in {\mathbb {R}}^{3}, \end{array} \right. \end{aligned}$$

where \(*\) denotes the convolution in \({\mathbb {R}}^{3}\). Cubic Hartree-type nonlinearity usually behaves critically for large time in three-space-dimensional case. In the present paper, we develop the factorization technique for the case of the higher-order Hartree-type equation (1.1) to show that the large time asymptotics of solutions to the Cauchy problem for the higher-order nonlinear Hartree-type equation has a modified character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Calderon, A.P., Vaillancourt, R.: A class of bounded pseudo-differential operators. Proc. Nat. Acad. Sci. USA 69, 1185–1187 (1972)

    Article  MathSciNet  Google Scholar 

  2. Carles, R., Lucha, W., Moulay, E.: Higher-order Schrödinger and Hartree–Fock equations. J. Math. Phys. 56(12), 122301 (2015)

    Article  MathSciNet  Google Scholar 

  3. Cazenave, Th.: Semilinear Schrödinger Equations, Courant Institute of Mathematical Sciences. American Mathematical Society, Providence (2003)

    Google Scholar 

  4. Cho, Y., Hwang, G., Yang, Ch.: On the modified scattering of 3-d Hartree type fractional Schrödinger equations with Coulomb potential. Adv. Differ. Equ. 23(9–10), 649–692 (2018)

    MATH  Google Scholar 

  5. Coifman, R.R., Meyer, Y.: Au dela des operateurs pseudo-differentiels, p. 185. Societe Mathematique de France, Paris (1978)

    MATH  Google Scholar 

  6. Cordes, H.O.: On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators. J. Funct. Anal. 18, 115–131 (1975)

    Article  MathSciNet  Google Scholar 

  7. Dysthe, K.B.: Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. Proc. R. Soc. Lond. Ser. A 369, 105–114 (1979)

    Article  Google Scholar 

  8. Fedoryuk, M.V.: Asymptotic methods in analysis. In: Evgrafov, M.A., Fedoryuk, M.V. (eds.) Analysis. I. Integral representations and Asymptotic Methods. Encyclopaedia of Mathematical Sciences, vol. 13. Springer, Berlin (1989)

    Google Scholar 

  9. Fukumoto, Y.: Motion of a curved vortex filament: higher-order asymptotics. In: Proceeding of IUTAM Symposium on Geometry and Statistics of Turbulence. pp. 211–216 (2001)

  10. Ginibre, J., Velo, G.: Long range scattering and modified wave operators for some Hartree type equations. II. Ann. Henri Poincare 1(4), 753–800 (2000)

    Article  MathSciNet  Google Scholar 

  11. Ginibre, J., Ozawa, T.: Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension \(n\ge 2\). Commun. Math. Phys. 151, 619–645 (1993)

    Article  Google Scholar 

  12. Hayashi, N., Naumkin, P.I.: Remarks on scattering theory and large time asymptotics of solutions to Hartree type equations with a long range potential. SUT J. Math. 34(1), 13–24 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Hayashi, N., Naumkin, P.I.: The initial value problem for the cubic nonlinear Klein-Gordon equation. Z. Angew. Math. Phys. 59(6), 1002–1028 (2008)

    Article  MathSciNet  Google Scholar 

  14. Hayashi, N., Naumkin, P.: On the inhomogeneous fourth-order nonlinear Schrödinger equation. J. Math. Phys. 56(9), 093502 (2015)

    Article  MathSciNet  Google Scholar 

  15. Hayashi, N., Naumkin, P..I.: Higher-order nonlinear Schrödinger equation in 2D case. Tohoku Math. J. (2) 72(1), 15–37 (2020)

    Article  MathSciNet  Google Scholar 

  16. Hayashi, N., Ozawa, T.: Scattering theory in the weighted \(L^{2}(R^{n})\) spaces for some Schrödinger equations. Ann. I.H.P. (Phys. Théor.) 48, 17–37 (1988)

    MATH  Google Scholar 

  17. Hwang, I.L.: The \(L^{2}\) -boundedness of pseudodifferential operators. Trans. Am. Math. Soc. 302(1), 55–76 (1987)

    MATH  Google Scholar 

  18. Karpman, V.I.: Stabilization of soliton instabilities by higher-order dispersion: fourth order nonlinear Schrödinger-type equations. Phys. Rev. E 53(2), 1336–1339 (1996)

    Article  Google Scholar 

  19. Ozawa, T.: Long range scattering for nonlinear Schrödinger equations in one space dimension. Commun. Math. Phys. 139(3), 479–493 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to unknown referees for many useful suggestions and comments. The work of P.I.N. is partially supported by CONACYT Project 283698 and PAPIIT Project IN103221.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel I. Naumkin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juarez-Campos, B., Naumkin, P.I. & Ruiz-Paredes, H.F. Modified scattering for higher-order nonlinear Hartree-type equations. Z. Angew. Math. Phys. 72, 92 (2021). https://doi.org/10.1007/s00033-021-01529-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01529-3

Keywords

Mathematics Subject Classification

Navigation