Skip to main content
Log in

Local well-posedness for the incompressible full magneto-micropolar system with vacuum

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, a full incompressible magneto-micropolar system is investigated. We prove the local well-posedness of strong solutions to the full system with vacuum. Moreover, previous compatibility conditions on the initial data are also moved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alazard, T.: Low Mach number limit of the full Navier–Stokes equations. Arch. Ration. Mech. Anal. 180, 1–73 (2006)

    Article  MathSciNet  Google Scholar 

  2. Bourguignon, J., Brezis, H.: Remarks on the Euler equation. J. Funct. Anal. 15, 341–363 (1974)

    Article  MathSciNet  Google Scholar 

  3. Carroll, R.W., Glick, A.J.: On the Ginzburg–Landau equations. Arch. Ration. Mech. Anal. 16, 373–384 (1964)

    Article  Google Scholar 

  4. Danchin, R., Mucha, P.B.: The incompressible Navier–Stokes equations in vacuum. arXiv: 1705.06061 v2

  5. Dou, C., Jiang, S., Ou, Y.: Low Mach number limit of full Navier–Stokes equations in a 3D bounded domain. J. Differ. Equ. 258, 379–398 (2015)

    Article  MathSciNet  Google Scholar 

  6. Duan, R.: Green’s function and large time behavior of the Navier–Stokes–Maxwell system. Anal. Appl. 10(2), 133–197 (2012)

    Article  MathSciNet  Google Scholar 

  7. Durán, M., Ferreira, J., Rojas-Medar, M.A.: Reproductive weak solutions of magneto-micropolar fluid equations in exterior domains. Math. Comput. Model. 35, 779–791 (2002)

    Article  MathSciNet  Google Scholar 

  8. Fan, J., Sun, W., Yin, J.: Blow-up criteria for Boussinesq system and MHD system and Landau–Lifshitz equations in a bounded domain. Bound. Value Probl. 2016, 90 (2016)

    Article  MathSciNet  Google Scholar 

  9. Fan, J., Samet, B., Zhou, Y.: A regularity criterion for a density-dependent incompressible liquid crystals model with vacuum. Hiroshima Math. J. 49, 129–138 (2019)

    Article  MathSciNet  Google Scholar 

  10. Fan, J., Zhou, Y.: Regularity criteria for the 3D density-dependent incompressible Maxwell–Navier–Stokes system. Comput. Math. Appl. 73, 2421–2425 (2017)

    Article  MathSciNet  Google Scholar 

  11. Germain, P., Ibrahim, S., Masmoudi, N.: Well-posedness of the Navier–Stokes–Maxwell equations. Proc. R. Soc. Edinb. Sect. A 144(1), 71–86 (2014)

    Article  MathSciNet  Google Scholar 

  12. Ibrahim, S., Yoneda, T.: Local solvability and loss of smoothness of the Navier–Stokes–Maxwell equations with large initial data. J. Math. Anal. Appl. 396, 555–561 (2012)

    Article  MathSciNet  Google Scholar 

  13. Kang, E., Lee, J.: Notes on the global well-posedness for the Maxwell-Navier-Stokes system. Abstr. Appl. Anal. 6, 402793 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Li, J.: Local existence and uniqueness of strong solutions to the Navier–Stokes equations with nonnegative density. J. Differ. Equ. 263, 6512–6536 (2017)

    Article  MathSciNet  Google Scholar 

  15. Lions, P.L.: Mathematical Topics in Fluid Mechanics, Compressible Models, vol. 2. Oxford University Press, New York (1998)

    MATH  Google Scholar 

  16. Liu, Y., Li, S.: Global well-posedness for magneto-micropolar system in \(2\frac{1}{2}\) dimensions. Appl. Math. Comput. 280, 72–85 (2016)

    MathSciNet  Google Scholar 

  17. Łukaszewicz, G.: Micropolar Fluids: Theory and Applications. Birkhäuser, Boston (1999)

    Book  Google Scholar 

  18. Łukaszewicz, G., Sadowski, W.: Uniform attractor for 2D magneto-micropolar fluid flow in some unbounded domains. Z. Angew. Math. Phys. 55, 247–257 (2004)

    Article  MathSciNet  Google Scholar 

  19. Masmoudi, N.: Global well posedness for the Maxwell–Navier–Stokes system in 2D. J. Math. Pures Appl. 93, 559–571 (2010)

    Article  MathSciNet  Google Scholar 

  20. Metivier, G., Schochet, S.: The incompressible limit of the non-isentropic Euler equations. Arch. Ration. Mech. Anal. 158, 61–90 (2001)

    Article  MathSciNet  Google Scholar 

  21. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis. AMS Chelsea Publishing, Providence (2001)

    MATH  Google Scholar 

  22. Wu, H.: Strong solution to the incompressible MHD equations with vacuum. Comput. Math. Appl. 61, 2742–2753 (2011)

    Article  MathSciNet  Google Scholar 

  23. Xiao, Y., Xin, Z.: On the vanishing viscosity limit for the 3D Navier–Stokes equations with a slip boundary condition. Commun. Pure Appl. Math. 60, 1027–1055 (2007)

    Article  MathSciNet  Google Scholar 

  24. Yuan, J.: Existence theorem and blow-up criterion for the strong solutions to the magneto-micropolar fluid equations. Math. Methods Appl. Sci. 31, 1113–1130 (2008)

    Article  MathSciNet  Google Scholar 

  25. Zhang, Z., Yao, Z., Wang, X.: A regularity criterion for the 3D magneto-micropolar fluid equations in Triebel–Lizorkin spaces. Nonlinear Anal. 74, 2220–2225 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially supported by NSFC (No. 11971234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of (1.18)

Appendix: Proof of (1.18)

Proof

Let \(w\times n=0\) on \(\partial \varOmega \). If (1.18) is not true, there exists a sequence \(w_m\in H^1\) and \(w_m\times n=0\) on \(\partial \varOmega \), such that

$$\begin{aligned} \Vert w_m\Vert _{L^2}>m(\Vert \mathrm {div}\,w_m\Vert _{L^2}+\Vert \mathrm {rot}\,w_m\Vert _{L^2}),\ \ \forall m. \end{aligned}$$
(2.33)

We may assume that

$$\begin{aligned} \Vert w_m\Vert _{L^2}=1. \end{aligned}$$
(2.34)

Using (1.17) for \(s=1\), we have

$$\begin{aligned} \Vert w_m\Vert\le & {} C(\Vert \mathrm {div}\,w_m\Vert _{L^2}+\Vert \mathrm {rot}\,w_m\Vert _{L^2}+\Vert w_m\Vert _{L^2})\nonumber \\\le & {} C\left( \frac{1}{m}+1\right) \le 2C. \end{aligned}$$
(2.35)

We can extract a subsequence still denoted \(w_m\), which converges weakly in \(H^1\) to \(w\in H^1, w\times n=0\) on \(\partial \varOmega \). The convergence holds in \(L^2\) strongly and then

$$\begin{aligned} \Vert w\Vert _{L^2}=1. \end{aligned}$$
(2.36)

On the other hand by (2.33),

$$\begin{aligned} \mathrm {div}\,w=0, \mathrm {rot}\,w=0. \end{aligned}$$
(2.37)

And therefore

$$\begin{aligned} w:=\mathrm {rot}\,v. \end{aligned}$$
(2.38)
$$\begin{aligned} 0=\int \limits v\mathrm {rot}\,w\mathrm {d}x=\int \limits w\mathrm {rot}\,v\mathrm {d}x-\int \limits v\cdot (w\times n)\mathrm {d}S=\int \limits w^2\mathrm {d}x, \end{aligned}$$

which gives

$$\begin{aligned} w=0\ \ \text{ in }\ \ \varOmega . \end{aligned}$$
(2.39)

This gives a contradiction with (2.36). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, J., Zhang, Z. & Zhou, Y. Local well-posedness for the incompressible full magneto-micropolar system with vacuum. Z. Angew. Math. Phys. 71, 42 (2020). https://doi.org/10.1007/s00033-020-1267-z

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-1267-z

Keywords

Mathematics Subject Classification

Navigation