Skip to main content
Log in

A microstretch continuum approach to model dielectric elastomers

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

A continuum model for dielectric elastomers is proposed on the basis of a micromorphic theory of electroelasticity. A biaxial microstretch deformation is considered to describe macrostretch and electric polarization due to applied mechanical loads and electric fields. A statistical isotropic condition is exploited to express the dependence of strain tensors on microstretch, and the equilibrium balance laws are given for micro- and macrodeformation and the electric potential. A one-dimensional problem is formulated to model a layer of dielectric elastomer subject to electric potential and mechanical traction. Some numerical results are obtained, which show consistence with the expected electroelastic physical behavior of such structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dorfmann, L., Ogden, R.W.: Nonlinear electroelasticity. Acta Mech. 174, 167–183 (2005)

    Article  Google Scholar 

  2. Jimenez, S.M.A., McMeeking, R.M.: Deformation dependent dielectric permittivity and its effects on actuator performance and stability. Int. J. Nonlinear Mech. 57, 183–191 (2013)

    Article  Google Scholar 

  3. Dorfmann, L., Ogden, R.W.: Nonlinear electroelasticity: material properties, continuum theory and applications. Proc. R. Soc. A 473, 20170311 (2017)

    Article  MathSciNet  Google Scholar 

  4. Cohen, N., deBotton, G.: The electromechanical response of polymer networks with long-chain molecules. Math. Mech. Solids 20, 721–728 (2014)

    Article  MathSciNet  Google Scholar 

  5. Cohen, N., Dayal, K., deBotton, G.: Electroelasticity of polymer networks. J. Mech. Phys. Solids 92, 105–126 (2016)

    Article  MathSciNet  Google Scholar 

  6. Itskov, M., Khiêm, V., Waluyo, S.: Electroelasticity of dielectric elastomers based on molecular chain statistics. Math. Mech. Solids 24, 862–873 (2019)

    Article  MathSciNet  Google Scholar 

  7. Eringen, A.C.: Microcontinuum Field Theories I—Foundations and Solids. Springer, New York (1999)

    Book  Google Scholar 

  8. Romeo, M.: Micromorphic continuum model for electromagnetoelastic solids. Z.A.M.P. 62, 513–527 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Romeo, M.: A microstructure continuum approach to electromagneto-elastic conductors. Contin. Mech. Thermodyn. 28, 1807–1820 (2016)

    Article  MathSciNet  Google Scholar 

  10. Romeo, M.: Polarization in dielectrics modeled as micromorphic continua. Z.A.M.P. 66, 1233–1247 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Romeo, M.: A microstretch description of electroelastic solids with application to plane waves. Math. Mech. Solids 24, 2181–2196 (2019)

    Article  MathSciNet  Google Scholar 

  12. Romeo, M.: A variational formulation for electroelasticity of microcontinua. Math. Mech. Solids 20, 1234–1250 (2015)

    Article  MathSciNet  Google Scholar 

  13. Chen, Y., Lee, J.D.: Determining material constants in micromorphic theory through phonon dispersion relations. Int. J. Eng. Sci. 41, 871–886 (2003)

    Article  Google Scholar 

  14. Villanueva-García, M., Robles, J., Martínez-Richa, A.: Quadrupolar moment calculations and mesomorphic character of model dimeric liquid crystals. Comput. Mater. Sci. 22, 300–308 (2001)

    Article  Google Scholar 

  15. Schlögl, T., Leyendecker, S.: A polarization based approach to model the strain dependent permittivity of dielectric elastomers. Sens. Actuators A 267, 156–163 (2017)

    Article  Google Scholar 

  16. Zhao, X., Hong, W., Suo, Z.: Electromechanical hysteresis and coexistent states in dielectric elastomers. Phys. Rev. B 76, 134113 (2007)

    Article  Google Scholar 

  17. Zhao, X., Suo, Z.: Electrostriction in elastic dielectrics undergoing large deformations. J. Appl. Phys. 104, 123530 (2008)

    Article  Google Scholar 

  18. Wissler, M., Mazza, E.: Electromechanical coupling in dielectric elastomer actuators. Sens. Actuators A 138, 384–393 (2007)

    Article  Google Scholar 

  19. Li, B., et al.: Effects of mechanical pre-stretch on the stabilization of dielectric elastomer actuation. J. Phys. D Appl. Phys. 44, 155301 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Romeo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romeo, M. A microstretch continuum approach to model dielectric elastomers. Z. Angew. Math. Phys. 71, 44 (2020). https://doi.org/10.1007/s00033-020-1266-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-1266-0

Mathematics Subject Classification

Keywords

Navigation