Skip to main content
Log in

A limiting problem for local/non-local p-Laplacians with concave–convex nonlinearities

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this manuscript, we deal with an equation involving a combination of quasi-linear elliptic operators of local and non-local nature with p-structure, and concave–convex nonlinearities. The prototypical model is given by

$$\begin{aligned} \left\{ \begin{array}{rclcl} -\Delta _p u + (-\Delta )^s_p u &{} = &{} \lambda _p u^q(x) + u^r(x) &{} \text{ in } &{} \Omega , \\ u(x)&{}>&{}0&{}\text{ in }&{} \Omega ,\\ u(x)&{} =&{} 0&{}\text { on } &{} \mathbb {R}^n {\setminus } \Omega , \end{array} \right. \end{aligned}$$

where \(\Omega \subset \mathbb {R}^n\) is a bounded and smooth domain, \(s\in (0,1)\), \(2 \le p < \infty \), \(0<q(p)<p-1<r(p)<\infty \) and \(0<\lambda _p< \infty \), being \(\Delta _p\) and \((-\Delta )_p^s\) the p-Laplace and fractional p-Laplace operators, respectively. We study existence and global uniform and explicit boundedness results to weak solutions. Then, we perform an asymptotic analysis for the limit of a family of weak solutions \(\{u_p\}_{p\ge 2}\) as \(p \rightarrow \infty \), which converges, up to a subsequence (under suitable assumptions on the problem data), to a non-trivial profile with uniform and explicit bounds, enjoying of a universal Lipschitz modulus of continuity, and verifying a nonlinear limiting PDE in the viscosity sense, which exhibits both local/non-local character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Indeed, we may consider the Bourgain–Brezis–Mironescu’s constant:

    $$\begin{aligned} C_{n,s,p} = (1-s)\left( \frac{1}{p} \int _{\mathbb {R}^n} |\langle t, \overrightarrow{e}\rangle | d\mathcal {H}^{n-1}(t) \right) , \end{aligned}$$

    where \(\overrightarrow{e}\) is any unit vector in \(\mathbb {R}^n\). Furthermore, the following asymptotic behavior holds true: \(\displaystyle \lim _{p \rightarrow \infty } \root p \of {C_{n,s,p}} = 1\). For this very reason, from now on, we will omit it in the definition of \((-\Delta )_p^s u\).

References

  1. Ambrosetti, A., Brezis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122, 519–543 (1994)

    MathSciNet  MATH  Google Scholar 

  2. Aronsson, M.G.C., Juutinen, P.: A tour of the theory of absolutely minimizing functions. Bull. Am. Math. Soc. (N.S.) 41(4), 439–505 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Barrios, B., Colorado, E., de Pablo, A., Sánchez, U.: On some critical problems for the fractional Laplacian operator. J. Differ. Equ. 252(11), 6133–6162 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Barrios, B., Colorado, E., Servadei, R., Soria, F.: A critical fractional equation with concave–convex power nonlinearities. Ann. Inst. H. Poincaré Anal. Non Linéaire 32(4), 875–900 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Blanc, P., da Silva, J.V., Rossi, J.D.: A limiting free boundary problem with gradient constraint and Tug-of-War games. Ann. Mat. Pura Appl. (4) 198(4), 1441–1469 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Boccardo, L., Escobedo, M., Peral, I.: A Dirichlet problem involving crititical exponents. Nonlinear Anal. TMA 24(11), 1639–1648 (1995)

    MATH  Google Scholar 

  7. Brändle, C., Colorado, E., de Pablo, A., Sánchez, U.: A concave–convex elliptic problem involving the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 143(1), 39–71 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Buccheri, S., da Silva, J.V., de Miranda, L.H: A system of local/nonlocal \(p-\)Laplacians: the eigenvalue problem and its limit as \(p \rightarrow \infty \). arXiv:2001.05985v2

  9. Bucur, C., Valdinocci, E.: Nonlocal diffusion and applications. Lecture Notes of the Unione Matematica Italiana, vol. 20. Springer, Cham; Unione Matematica Italiana, Bologna (2016). xii+155 pp. ISBN: 978-3-319-28738-6; 978-3-319-28739-3

  10. Caffarelli, L., Roquejoffre, J.-M., Savin, O.: Nonlocal minimal surfaces. Commun. Pure Appl. Math. 63(9), 1111–1144 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Caffarelli, L.A., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Chambolle, A., Lindgren, E., Monneau, R.: A Hölder infinity Laplacian. ESAIM Control Optim. Calc. Var. 18(3), 799–835 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Chang, S.-Y.A., del González, M.: Fractional Laplacian in conformal geometry. Adv. Math. 226(2), 1410–1432 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Charro, F., Colorado, E., Peral, I.: Multiplicity of solutions to uniformly elliptic fully nonlinear equations with concave–convex right-hand side. J. Differ. Equ. 246(11), 4221–4248 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Charro, F., Parini, E.: Limits as \(p \rightarrow \infty \) of \(p-\)Laplacian eigenvalue problems perturbed with a concave or convex term. Calc. Var. Partial Differ. Equ. 46(1–2), 403–425 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Charro, F., Parini, E.: On the existence threshold for positive solutions of \(p-\)Laplacian equations with a concave–convex nonlinearity. Commun. Contemp. Math. 17(6), 1450044–8 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Charro, F., Peral, I.: Limit branch of solutions as \(p \rightarrow \infty \) for a family of sub-diffusive problems related to the \(p\)-Laplacian. Commun. Partial Differ. Equ. 32(10–12), 1965–1981 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Charro, F., Peral, I.: Zero order perturbations to fully nonlinear equations: comparison, existence and uniqueness. Commun. Contemp. Math. 11(1), 131–164 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Charro, F., Peral, I.: Limits as \(p \rightarrow \infty \) of \(p-\)Laplacian concave–convex problems. Nonlinear Anal. 75(4), 2637–2659 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Chen, W., Deng, S.: The Nehari manifold for nonlocal elliptic operators involving concave–convex nonlinearities. Z. Angew. Math. Phys. 66(4), 1387–1400 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Chen, W., Deng, S.: The Nehari manifold for a fractional p-Laplacian system involving concave–convex nonlinearities. Nonlinear Anal. Real World Appl. 27, 80–92 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Chen, W., Squassina, M.: Critical nonlocal systems with concave–convex powers. Adv. Nonlinear Stud. 16(4), 821–842 (2016)

    MathSciNet  MATH  Google Scholar 

  23. da Silva, J.V., Rossi, J.D.: A limit case in non-isotropic two-phase minimization problems driven by \(p\)-Laplacians. Interfaces Free Bound. 20(3), 379–406 (2018)

    MathSciNet  MATH  Google Scholar 

  24. da Silva, J.V., Rossi, J.D.: The limit as \(p\rightarrow \infty \) in free boundary problems with fractional \(p\)-Laplacians. Trans. Am. Math. Soc. 371(4), 2739–2769 (2019)

    MathSciNet  MATH  Google Scholar 

  25. da Silva, J.V., Rossi, J.D., Salort, A.M.: Regularity properties for \(p\)-dead core problems and their asymptotic limit as \(p \rightarrow \infty \). J. Lond. Math. Soc. (2) 99, 69–96 (2019)

    MathSciNet  MATH  Google Scholar 

  26. da Silva, J.V., Salort, A.M.: Sharp regularity estimates for quasi-linear elliptic dead core problems and applications. Calc. Var. Partial Differ. Equ. 57(3), 24 (2018)

    MathSciNet  MATH  Google Scholar 

  27. da Silva, J.V., Salort, A.M.: A limiting obstacle type problem for the inhomogeneous \(p\)-fractional Laplacian. Calc. Var. Partial Differ. Equ. 58(4), 29 (2019)

    MathSciNet  MATH  Google Scholar 

  28. De Nápoli, P., Pinasco, J.P.: Lyapunov-type inequalities for partial differential equations. J. Funct. Anal. 270(6), 1995–2018 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Del Pezzo, L.M., Ferreira, R., Rossi, J.D.: Eigenvalues for a combination between local and nonlocal \(p\)-Laplacians. Fract. Calc. Appl. Anal. 22(5), 1414–1436 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Díaz, J.I.: Nonlinear partial differential equations and free boundaries. Vol. I. Elliptic equations. Research Notes in Mathematics, 106. Pitman (Advanced Publishing Program), Boston, MA (1985). vii+323 pp. ISBN: 0-273-08572-7

  31. Di Castro, A., Kuusi, T., Palatucci, G.: Local behavior of fractional \(p\)-minimizers. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(5), 1279–1299 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Fernández Bonder, J., Salort, A.M.: Fractional order Orlicz–Sobolev spaces. J. Funct. Anal. 277(2), 333–367 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Fernández Bonder, J., Pinasco, J., Salort, A.: Quasilinear eigenvalue problems. Revista de la Unión Matemática Argentina 56(1), 1–25 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Ferreira, R., Llanos, M.P.: Limit problems for a fractional \(p\)-Laplacian as \(p \rightarrow \infty \). NoDEA Nonlinear Differ. Equ. Appl. 23(2), 28 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Goel, D., Sreenadh, K.: On the second eigenvalue of combination between local and nonlocal \(p\)-Laplacian. Proc. Am. Math. Soc. 147, 4315–4327 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Iannizzotto, A., Mosconi, S., Squassina, M.: Global Hölder regularity for the fractional \(p\)-Laplacian. Rev. Mat. Iberoam. 32(4), 1353–1392 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Juutinen, P., Lindqvist, P., Manfredi, J.J.: The \(\infty \)-eigenvalue problem. Arch. Ration. Mech. Anal. 148(2), 89–105 (1999)

    MathSciNet  MATH  Google Scholar 

  39. Kouhestani, N., Moameni, A.: Multiplicity results for elliptic problems with super-critical concave and convex nonlinearties. Calc. Var. Partial Differ. Equ. 57(2), 12 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Kouhestani, N., Mahyar, H., Moameni, A.: Multiplicity results for a non-local problem with concave and convex nonlinearities. Nonlinear Anal. 182, 263–279 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Korvenpää, J., Kuusi, T., Lindgren, E.: Equivalence of solutions to fractional \(p\)-Laplace type equations. J. Math. Pures Appl. (9) 132, 1–26 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Kuusi, T., Mingione, G., Sire, Y.: Regularity Issues Involving the Fractional \(p\)-Laplacian. Recent Developments in Nonlocal Theory, pp. 303–334. De Gruyter, Berlin (2018)

    MATH  Google Scholar 

  43. Lindgren, E., Lindqvist, P.: Fractional eigenvalues. Calc. Var. Partial Differ. Equ. 49(1–2), 795–826 (2014)

    MathSciNet  MATH  Google Scholar 

  44. Mosconi, S., Squassina, M.: Recent progresses in the theory of nonlinear nonlocal problems. Bruno Pini Mathematical Analysis Seminar 2016, vol. 7, pp. 147–164. Univ. Bologna, Alma Mater Stud., Bologna (2016)

  45. Simon, J.: Régularité de la solution d’une équation non linéaire dans \(\mathbb{R}^n\). (French) Journées d’Analyse Non Linéaire (Proc. Conf., Besançon, 1977), vol. 665, pp. 205–227. Lecture Notes in Math. Springer, Berlin (1978)

  46. Squassina, M.: Preface: recent progresses in the theory of nonlinear nonlocal problems. Discrete Contin. Dyn. Syst. Ser. S 11(3), i (2018)

    MathSciNet  MATH  Google Scholar 

  47. Stinga, P.R.: User’s Guide to the Fractional Laplacian and the Method of Semigroups. Handbook of Fractional Calculus with Applications, vol. 2, pp. 235–265. De Gruyter, Berlin (2019)

    Google Scholar 

  48. Wei, Y., Su, X.: Multiplicity of solutions for non-local elliptic equations driven by the fractional Laplacian. Calc. Var. Partial Differ. Equ. 52(1–2), 95–124 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Leandro M. Del Pezzo and Prof. Julio D. Rossi for many enlightening discussions with regard to local/non-local eigenvalue problem in [29] and its limit counterpart. This work was partially supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-Argentina) under Grant PIP GI No. 11220150100036CO, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (PNPD/CAPES-UnB-Brazil) under Grant 88887.357992/2019-00 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil) under Grant No. 310303/2019-2. A. Salort is a member of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel M. Salort.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The (sp)-eigenvalue problem and its limit setting

In this section, we state some results on the first eigenvalue and eigenfunction of \(\mathcal {P}_{s, p}\) with Dirichlet boundary condition. Given a bounded and open regular domain \(\Omega \subset \mathbb {R}^n\), for any \(s\in (0,1)\) and \(p>1\), the first eigenvalue, namely \(\lambda _1(s,p)\), is variationally characterized as the minimizer of following Rayleigh’s quotient (see [8, Section 1.2] for details):

figure b

Moreover, if \(\varphi _1 = \varphi _1(s,p)\in W^{1, p}_0(\Omega )\) is an associated eigenfunction, then it fulfills the equation

$$\begin{aligned} \left\{ \begin{array}{rclcl} \mathcal {P}_{s, p} \,\varphi _1 &{} = &{} \lambda _1(s,p) |\varphi _1 |^{p-2}\varphi _1 &{} \text{ in } &{}\Omega \\ \varphi _1 &{} = &{} 0 &{} \text{ on } &{} \mathbb {R}^n{\setminus } \Omega , \end{array} \right. \end{aligned}$$

in the weak sense.

By arguing as in [8, Theorems 1.1 and 1.2], it can be proved that \(\lambda _1(s,p)\) is simple and its corresponding eigenfunctions are bounded and have constant sign. Furthermore, by supposing (without loss of generality) that \(\Vert \varphi _1\Vert _{L^p(\Omega )} = 1\), we have the following limiting characterization (see [8, Theorem 1.3] for more details):

$$\begin{aligned} \displaystyle \lim _{p\rightarrow \infty } \root p \of {\lambda _1(s,p)} \mathrel {\mathop :}=\Lambda _1(\Omega ) = \displaystyle \inf _{u \in W^{1,\infty }_0(\Omega ) \atop {u \not \equiv 0} }\max \left\{ \Vert \nabla u\Vert _{L^\infty (\Omega )}, [u_{\infty }]_{C^{0, s}(\mathbb {R}^n)} \right\} . \end{aligned}$$
(A.1)

Another interesting piece of information is that such an “\(\infty \)-eigenvalue” enjoys the following (useful and simple) geometric characterization (cf. [38, 43] for similar results in the local and non-local scenarios):

Theorem 1

([8, Theorem 1.3]) Under the above definition, we have that

figure c

where \(\displaystyle \mathfrak {R}_{\Omega } \mathrel {\mathop :}=\max _{x \in \Omega } \text {dist}(x, \partial \Omega )\). Moreover, there exists \(u_{\infty } \in W_0^{1,\infty }(\Omega )\), such that \(\Vert u_{\infty }\Vert _{L^{\infty }(\Omega )}=1\), \(u_p \rightarrow u_{\infty }\) uniformly in \(\Omega \) (up to subsequences) and

$$\begin{aligned} \Lambda _1(\Omega ) = \mathcal {J}_{\infty }(u_{\infty }) \mathrel {\mathop :}=\displaystyle \inf _{w \in W_0^{1,\infty }(\Omega ) \atop {w \not \equiv 0}} \max \left\{ \Vert \nabla u\Vert _{L^\infty (\Omega )}, [u_{\infty }]_{C^{0, s}(\mathbb {R}^n)} \right\} . \end{aligned}$$

Finally, by using the same ideas as in Theorem 1.5 we are able to deduce the corresponding limit operator governing the limiting eigenvalue problem (cf. [29, Theorem 1.3]).

Theorem 2

([8, Theorem 1.4]) Assume that condition (A.1) holds. Then, any uniform limit of (normalized, i.e., \(\Vert \varphi \Vert _{L^{\infty }(\Omega )}=1\)) eigenfunctions corresponding to the first (sp)-eigenvalue \(\lambda _1(s,p)\), is a viscosity solution to

$$\begin{aligned} \left\{ \begin{array}{rcrcl} &{}&{}\mathcal {G}_{\infty }(\varphi _{\infty }, \nabla \varphi _{\infty }, D^2 \varphi _{\infty }) = 0 &{} \text {in} &{} \Omega ,\\ &{}&{}\varphi _{\infty } > 0 &{} \text {in} &{} \Omega ,\\ &{}&{}\varphi _{\infty } = 0 &{} \text {on} &{} \mathbb {R}^n {\setminus } \Omega , \end{array} \right. \end{aligned}$$

where

$$\begin{aligned} \mathcal {G}_{\infty }(v, \nabla v, D^2 v) = \max \{\mathcal {G}_1[v], \, \mathcal {G}_2[v]\} \end{aligned}$$

and

$$\begin{aligned} \mathcal {G}_1[v]&\mathrel {\mathop :}=\min \left\{ \mathcal {L}_{\infty } v,\, \mathcal {L}_{\infty }^{+} v - \max \left\{ \frac{1}{\mathfrak {R}_{\Omega }} , \frac{1}{\mathfrak {R}^s_{\Omega }}\right\} v,\, \mathcal {L}_{\infty }^{+} v -|\nabla v|\right\} \\ \mathcal {G}_2[v]&\mathrel {\mathop :}=\min \left\{ -\Delta _{\infty } v, \,|\nabla v| - \max \left\{ \frac{1}{\mathfrak {R}_{\Omega }} , \frac{1}{\mathfrak {R}^s_{\Omega }}\right\} v, \,|\nabla v| - \mathcal {L}_{\infty }^{+} v, \,|\nabla v| +\mathcal {L}_{\infty }^{-} v\right\} . \end{aligned}$$

Appendix B: The (sp)-torsional creep problem and its limit counterpart

In this section, we study several properties of the (sp)-torsional creep-type problem

$$\begin{aligned} {\left\{ \begin{array}{ll} \begin{array}{rclcl} &{}&{}\mathcal {P}_{s,p} \, \tau _p = 1 &{} \text{ in } &{} \Omega , \\ &{}&{}\tau _p > 0&{}\text { in } &{} \Omega ,\\ &{}&{}\tau _p = 0&{}\text { on } &{} \mathbb {R}^n {\setminus } \Omega . \end{array} \end{array}\right. } \end{aligned}$$
(B.1)

Notice that existence of a weak solution of (B.1) follows from standard variational arguments. The Euler–Lagrange (or energy) functional \(\mathrm {H}_{s, p}:W^{1,p}_0(\Omega ) \rightarrow \mathbb {R}\) associated with such a problem is defined as follows:

$$\begin{aligned} \mathrm {H}_{s, p}(v)=\frac{1}{2p}[v]_{W^{s,p}(\mathbb {R}^n)}^p + \frac{1}{p}\Vert \nabla u\Vert _{L^p(\Omega )}^p -\Vert v\Vert _{L^1(\Omega )}. \end{aligned}$$

We are now in a position to present the existence/uniqueness’ result to (B.1).

Lemma B.1

Let \(s\in (0,1)\) and \(p>\frac{n}{s}\) be fixed. Then, there exists a unique weak solution of (B.1), which is a minimizer of \(\mathrm {H}_{s, p}\) on \(W^{1,p}_0(\Omega )\).

Proof

First of all, observe that \(\mathrm {H}_{s, p}\) is coercive in \(W^{1,p}_0(\Omega )\). Indeed, by using Hölder’s inequality and the characterization of ((sp)-Eigenvalue) we get that

$$\begin{aligned} \mathrm {H}_{s, p}(v)&\ge \frac{1}{2p}[v]_{W^{s,p}(\mathbb {R}^n)}^p + \frac{1}{p}\Vert \nabla v\Vert _{L^p(\Omega )}^p -\frac{1}{\root p \of {\lambda _1(s,p)}}|\Omega |^{1-\frac{1}{p}}\Vert v\Vert _{W^{1,p}_0(\Omega )}\\&\ge \frac{1}{p}\Vert v\Vert _{W^{1,p}_0(\Omega )}^p -\frac{1}{\root p \of {\lambda _1(s,p)}}|\Omega |^{1-\frac{1}{p}}\Vert v\Vert _{W^{1,p}_0(\Omega )}. \end{aligned}$$

At this point, we stress that the function

$$\begin{aligned} \mathrm {g}_p(t)\mathrel {\mathop :}=\frac{1}{p}t^p-\frac{1}{\root p \of {\lambda _1(s,p)}}|\Omega |^{1-\frac{1}{p}}t \end{aligned}$$

is bounded from below, and in addition, \(\mathrm {g}_p(t)\rightarrow \infty \) when \(t\rightarrow \infty \), thereby providing the desired property. Moreover, since it is clear that \(\mathrm {H}_{s, p}\) is also lower semi-continuous, existence of a minimizer can be ensured by applying the direct methods in the calculus of variations.

Finally, uniqueness follows from the strict convexity of \(\mathrm {H}_{s, p}\), which, in turn, follows from the strict monotonicity of the operators \(-\Delta _p\) and \((-\Delta )_p^s\), respectively. Lastly, it is clear that any minimizer to \(\mathrm {H}_{s, p}\) is a weak solution to (B.1). This concludes the proof. \(\square \)

In the sequel, we establish a key result which ensures that any family of solutions to (B.1) is uniformly bounded in \(W^{1,p}_0(\Omega )\).

Lemma B.2

Let \(\tau _p\) be a weak solution of (B.1). Then, there exists \(C_p>0\) such that

$$\begin{aligned} \displaystyle \Vert \tau _p\Vert _{W^{1,p}_0(\Omega )}\le C_p \quad \text {with}\quad \lim _{p\rightarrow \infty }C_p=1. \end{aligned}$$

Proof

Remember that a weak solution \(\tau _p\) of (B.1) satisfies the following integral relation:

$$\begin{aligned} \Vert \nabla \tau _p\Vert _{L^p(\Omega )}^p+[\tau _p]_{W^{s,p}(\mathbb {R}^n)}^p=\int _\Omega \tau _p(x)\mathrm{d}x. \end{aligned}$$

One more time, by using Hölder’s inequality and ((sp)-Eigenvalue) we obtain the following:

$$\begin{aligned} \begin{array}{rcl} \displaystyle \Vert \tau _p\Vert _{W^{1,p}_0(\Omega )}^p &{} \le &{} \Vert \nabla \tau _p\Vert _{L^p(\Omega )}^p + [\tau _p]_{W^{s,p}(\mathbb {R}^n)}^p \\ &{} = &{} \displaystyle \int _\Omega \tau _p(x)\mathrm{d}x \\ &{}\le &{} \displaystyle |\Omega |^{1-\frac{1}{p}} \Vert \tau _p\Vert _{L^p(\Omega )}\\ &{} \le &{} \displaystyle \frac{1}{\root p \of {\lambda _1(s,p)}}|\Omega |^{1-\frac{1}{p}}\Vert \tau _p\Vert _{W^{1,p}_0(\Omega )}. \end{array} \end{aligned}$$

Therefore, by defining \(\mathrm {h}_p(t)=t^p - \frac{1}{\root p \of {\lambda _1(s,p)}}\mathcal {L}^n(\Omega )^{1-\frac{1}{p}}t\) we get

$$\begin{aligned} \Vert \tau _p\Vert _{W^{1,p}_0(\Omega )}\le C_p:=\sup \{ t>0:\mathrm {h}_p(t)\le 0\}. \end{aligned}$$

Now, notice that

$$\begin{aligned} \mathrm {h}_p(t)\le 0 \quad \text {for} \quad 0<t\le \sqrt{[p-1]{\frac{1}{\root p \of {\lambda _1(s,p)}}\mathcal {L}^n(\Omega )^{1-\frac{1}{p}}}} \qquad \text {and} \qquad \mathrm {h}_p(t)\rightarrow \infty \quad \text {as} \quad t\rightarrow \infty . \end{aligned}$$

Particularly, this implies that

$$\begin{aligned} \lim _{p\rightarrow \infty } \mathrm {h}_p(t)\le 0 \quad \text {for} \quad 0<t\le 1 \qquad \text {and} \qquad \lim _{p\rightarrow \infty } \mathrm {h}_p(t)= \infty \quad \text {for} \quad t>1, \end{aligned}$$

which concludes the proof. \(\square \)

Next, we prove a convergence result for any family of solutions to (B.1).

Lemma B.3

Let \(\{\tau _p\}_{p \ge 2}\) be a family of weak solution to (B.1). Then, up to subsequence,

$$\begin{aligned} \tau _p\rightarrow \tau _\infty \quad \quad \text {uniformly in} \quad \mathbb {R}^n \quad \text {as} \quad p\rightarrow \infty . \end{aligned}$$

In addition, \(\tau _\infty \in W^{1,\infty }_0(\Omega )\) and the following (uniform) estimates hold true

$$\begin{aligned} \Vert \tau _{\infty }\Vert _{L^{\infty }(\Omega )} \le C(n) \quad \text {and} \quad \Vert \tau _\infty \Vert _{W^{1,\infty }_0(\Omega )}\le 1. \end{aligned}$$
(B.2)

Proof

Let \(\{\tau _p\}_{p \ge 2}\) be any sequence of weak solutions of (B.1). By Morrey’s inequality (Proposition 2.7) and Hölder embedding (Theorem 2.8), we have that

$$\begin{aligned} \begin{array}{rcl} \Vert \tau _p\Vert _{L^{\infty }(\Omega )} &{} \le &{} \max \left\{ \Vert \tau _p\Vert _{C^{0,1-\frac{n}{p}}(\Omega )}, \Vert \tau _p\Vert _{C^{0, s-\frac{n}{p}}(\mathbb {R}^n)}\right\} \\ &{} \le &{} \max \left\{ \mathbf{C}_H\Vert \nabla \tau _p\Vert _{L^p(\Omega )}, \mathbf{C}^{*}_H\Vert \tau _p\Vert _{W^{s, p}(\mathbb {R}^n)}\right\} \\ &{} \le &{} \max \left\{ \mathbf{C}_H, \mathbf{C}^{*}_H\right\} \Vert \tau _p\Vert _{W^{s, p}(\mathbb {R}^n)}\\ &{}\le &{} \max \left\{ \mathbf{C}_H\mathbf{C}_p, \mathbf{C}^{*}_HC_p \right\} , \end{array} \end{aligned}$$

which implies the uniform boundedness and pre-compactness for \(p\gg 1\) sufficiently large. Hence, by Arzelá–Ascoli compactness criterion, there exists a subsequence of \(\{\tau _p\}_{p \ge 2}\) such that

$$\begin{aligned} \lim _{p\rightarrow \infty } \tau _p=\tau _\infty \quad \text { uniformly in } \quad \mathbb {R}^n \end{aligned}$$

and such that \(\tau _\infty =0\) in \(\mathbb {R}^n{\setminus } \Omega \).

Finally, notice that by sending \(p\rightarrow \infty \), since \(\displaystyle \lim _{p \rightarrow \infty } C_p = 1\) (see Lemma B.2), we conclude that \(\tau _\infty \in W^{1, \infty }_0(\Omega )\) (extended to zero outside \(\Omega \)) and the desired estimates in (B.2) hold true. \(\square \)

From Lemmas B.2 and B.3, there exists a function \(\tau _\infty \) such that \(\tau _p\rightarrow \tau _\infty \) uniformly in \({\bar{\Omega }}\). Therefore, applying mutatis mutandis the arguments in the proof of Theorem 1.5 we obtain a characterization of the limit equation fulfilled by the limit profile (in the viscosity sense). We leave the interested reader to verify the details.

Theorem B.4

Let \(\Omega \subset \mathbb {R}^n\) be a bounded domain and \(p>n\). Then, the sequence \(\{\tau _p\}_{p\ge 2}\) of weak solutions of (B.1) converge uniformly as \(p\rightarrow \infty \) to a viscosity solution to

$$\begin{aligned} \left\{ \begin{array}{rcrcl} &{}&{}\mathcal {T}_{\infty }(\tau _\infty , \nabla \tau _\infty , D^2 \tau _\infty ) = 0 &{} \text {in} &{} \Omega ,\\ &{}&{}\tau _\infty > 0 &{} \text {in} &{} \Omega ,\\ &{}&{}\tau _\infty = 0 &{} \text {on} &{} \mathbb {R}^n {\setminus } \Omega , \end{array} \right. \end{aligned}$$
(B.3)

where

$$\begin{aligned} \mathcal {T}_{\infty }(v, \nabla v, D^2 v) = \max \{\mathcal {T}_1[v], \, \mathcal {T}_2[v]\} \end{aligned}$$

and

$$\begin{aligned} \mathcal {T}_1[v]&\mathrel {\mathop :}=\min \left\{ \mathcal {L}_{\infty } v, \mathcal {L}_{\infty }^{+} v -1, \mathcal {L}_{\infty }^{+} v -|\nabla v|\right\} \\ \mathcal {T}_2[v]&\mathrel {\mathop :}=\min \left\{ -\Delta _{\infty } v, |\nabla v| - 1, |\nabla v| - \mathcal {L}_{\infty }^{+} v, |\nabla v| +\mathcal {L}_{\infty }^{-} v\right\} . \end{aligned}$$

Appendix C: The (sp)-concave problem and its limit scenario

In this final section, we deal with the (sp)-concave problem given by

$$\begin{aligned} \left\{ \begin{array}{rclcl} &{}&{}\mathcal {P}_{s, p} v = \lambda _p v^q &{}\quad \text { in } &{} \Omega ,\\ &{}&{}v> 0 &{}\quad \text { in }&{} \Omega ,\\ &{}&{}v= 0 &{}\quad \text { on } &{} \mathbb {R}^n{\setminus } \Omega ,\\ \end{array} \right. \end{aligned}$$
(C.1)

where \(q=q(p)\) is assumed to satisfy (LC).

We start by proving existence/uniqueness of weak solutions of the concave problem (C.1).

Lemma C.1

Let \(\Omega \subset \mathbb {R}^n\) be a bounded and regular domain, \(p>n\) and \(0<q<p-1\). Then, for any \(\lambda _p>0\) there exists a unique weak solution \(\kappa _p \in W^{1,p}_0(\Omega )\) of (C.1).

Proof

In light of Proposition 2.6, existence of a weak solution will follow if we can find a sub-solution \(\underline{v}\) and a super-solution \(\overline{v}\) of (C.1) such that \(\underline{v}\le \overline{v}\).

In order to construct a sub-solution, according to Appendix 4, let \(\lambda _1(s,p)\) be the first eigenvalue of \(\mathcal {P}_{s, p}\) in \(\Omega \) with (zero) Dirichlet boundary condition, and let \(\varphi _1(s,p)\) be the corresponding eigenfunction normalized such that \(\Vert \varphi _1\Vert _{L^{\infty }(\Omega )}=1\). Now, we define \(\underline{v}=\theta \varphi _1 \in W^{s, p}_0(\mathbb {R}^n)\) with \(\theta >0\) to be chosen a posteriori. Then, for any nonnegative \(\psi \in W^{1,p}_0(\Omega )\) it holds that

$$\begin{aligned} \begin{array}{rcl} \displaystyle \mathcal {E}_p(\underline{v},\psi ) + \mathcal {E}_{s,p}(\underline{v},\psi ) &{} = &{} \displaystyle \lambda _1(s, p) \int _\Omega \underline{v}^{p-1}\psi \,\mathrm{d}x \\ &{} \le &{} \displaystyle \frac{\lambda _1(s, p)\theta ^{p-1}}{\lambda _p \theta ^{q}} \int _\Omega \lambda _p \underline{v}^q \psi \,\mathrm{d}x. \end{array} \end{aligned}$$

Therefore, \(\underline{v}\) is the required weak sub-solution provided we choose \(\theta \) such that

$$\begin{aligned} 0<\theta \le \min \left\{ 2, \left( \frac{\lambda _p}{\lambda _1(s,p)}\right) ^\frac{1}{p-1-q}\right\} . \end{aligned}$$

In the sequel, let us construct a weak super-solution. For this purpose, we choose a larger (regular) domain \({\tilde{\Omega }} \supset \Omega \) with eigenvalue \({\tilde{\lambda }}_1 = {\tilde{\lambda }}_1(s,p)\) such that the corresponding positive eigenfunction \({\tilde{\varphi }}_1 = {\tilde{\varphi }}_1(s,p)\) is normalized with \(\displaystyle \min _{x\in \Omega } {\tilde{\varphi }}_1=1\).

Now, we define \(\overline{v}=\iota (1+{\tilde{\varphi }}_1)\). Observe that \(\overline{v}\ge 2\iota \) in \(\Omega \). For this reason, by taking \(\iota \) large enough (to be explicitly chosen a posteriori), we ensure that \(\overline{v}\ge \underline{v}\) in \(\Omega \). Moreover, for any nonnegative \({\tilde{\psi }}\in W^{1, p}_0({\tilde{\Omega }})\) it holds that

$$\begin{aligned} \mathcal {E}_p({\overline{v}}, {\tilde{\psi }}) + \mathcal {E}_{s,p}({\overline{v}}, {\tilde{\psi }})&= \iota ^{p-1}(\mathcal {E}_p({\tilde{\varphi }}_1, {\tilde{\psi }}) + \mathcal {E}_{s,p}({\tilde{\varphi }}_1, {\tilde{\psi }})) =\iota ^{p-1} {\tilde{\lambda }}_1 \int _{{\tilde{\Omega }}} {\tilde{\varphi }}_1^{p-1} {\tilde{\psi }}\,\mathrm{d}x\\&\ge \iota ^{p-1} {\tilde{\lambda }}_1 \int _{{\tilde{\Omega }}} {\tilde{\varphi }}_1^q {\tilde{\psi }}\,\mathrm{d}x \ge \frac{\iota ^{p-1}}{2^q} {\tilde{\lambda }}_1 \int _{{\tilde{\Omega }} } ({\tilde{\varphi }}_1+1)^q {\tilde{\psi }}\,\mathrm{d}x\\&\ge \frac{ {\tilde{\lambda }}_1 \iota ^{p-1}}{ (2\iota )^q\lambda _p} \int _\Omega \lambda _p \overline{v}^q \psi \,\mathrm{d}x. \end{aligned}$$

As a result, we find that \(\overline{v}\) is the desired weak super-solution (in \(\Omega \)) provided \(\iota >0\) fulfills:

$$\begin{aligned} \iota \ge \max \left\{ 1, \left( \frac{2^q \lambda _p}{{\tilde{\lambda }}_1(s,p)} \right) ^\frac{1}{p-1-q}\right\} , \end{aligned}$$

where we have used that \( W^{1,p}_0(\Omega ) \subset W^{1,p}_0({\tilde{\Omega }})\).

In conclusion, we remark that for \(p \gg 1\) large enough, in view of (LC) and (A.1) we can choose both \(\theta \) and \(\iota \) independent of p as follows:

$$\begin{aligned} 0< \theta \le \min \left\{ 2, \frac{1}{2} \left( \frac{\lambda _\infty }{\Lambda _1(\Omega )} \right) ^\frac{1}{1-\mathcal {Q}}\right\} \qquad \text {and} \qquad \iota \ge \max \left\{ 1, 2.2^{\frac{1}{\mathcal {Q}-1}}\left( \frac{\lambda _\infty }{\Lambda _1({\tilde{\Omega }})} \right) ^\frac{1}{1-\mathcal {Q}}\right\} . \end{aligned}$$

The proof is now concluded. \(\square \)

Finally, we derive the corresponding limiting operator governing the limit of any family to the associated concave problem C.1.

Theorem C.2

Let \(\Omega \subset \mathbb {R}^n\) be a bounded and regular domain. Suppose that assumptions (LC) are in force. Then, the sequence of weak solutions \((\kappa _p)_{p\ge 2}\) of (C.1) converges uniformly to \(\kappa _{\infty }\), a viscosity solution of

$$\begin{aligned} \left\{ \begin{array}{rcrcl} &{}&{}\mathcal {K}_{\infty }(\kappa _{\infty }, \nabla \kappa _{\infty }, D^2 \kappa _{\infty }) = 0 &{} \text {in} &{} \Omega ,\\ &{}&{}\kappa _{\infty } > 0 &{} \text {in} &{} \Omega ,\\ &{}&{}\kappa _{\infty } = 0 &{} \text {on} &{} \mathbb {R}^n {\setminus } \Omega , \end{array} \right. \end{aligned}$$
(C.2)

where

$$\begin{aligned} \mathcal {K}_{\infty }(v, \nabla v, D^2 v) = \max \{\mathcal {K}_1[v], \, \mathcal {K}_2[v]\} \end{aligned}$$

and

$$\begin{aligned} \mathcal {K}_1[v]&\mathrel {\mathop :}=\min \left\{ \mathcal {L}_{\infty }\, v,\, \mathcal {L}_{\infty }^{+}\, v - \lambda _{\infty }v^{\mathcal {Q}},\, \mathcal {L}_{\infty }^{+} \,v -|\nabla v|\right\} \\ \mathcal {K}_2[v]&\mathrel {\mathop :}=\min \left\{ -\Delta _{\infty }\, v, |\nabla v| - \lambda _{\infty } v^{\mathcal {Q}},\, |\nabla v| - \mathcal {L}_{\infty }^{+}\, v, |\nabla v| +\mathcal {L}_{\infty }^{-}\, v\right\} . \end{aligned}$$

Proof

The uniform convergence of the sequence follows with the same arguments that in the proofs of Theorem 1.3 and Proposition 4.1. The equation satisfied by the limit profile can be deduced with the same procedure that in Theorem 1.5. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, J.V., Salort, A.M. A limiting problem for local/non-local p-Laplacians with concave–convex nonlinearities. Z. Angew. Math. Phys. 71, 191 (2020). https://doi.org/10.1007/s00033-020-01419-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01419-0

Keywords

Mathematics Subject Classification

Navigation