Skip to main content
Log in

Critical mass of lymphocytes for the coexistence in a chemotaxis system modeling tumor–immune cell interactions

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In a bounded smooth domain \(\Omega \subset {\mathbb {R}}^{2}\) and with a positive parameter \(\chi >0\), we consider the chemotaxis system

$$\begin{aligned} \left\{ \begin{array}{ll} u_t=\Delta u -\chi \nabla \cdot (u \nabla v), \\ v_t=\Delta v +w-v-uv, \\ w_t=\Delta w-uw + w(1-w), \end{array} \right. \end{aligned}$$

for modeling the interactions between tumor and immune cells. It is shown that for any given \(\chi >0\) and for suitably regular initial data \((u_0, v_0, w_0)\), the corresponding homogeneous Neumann initial-boundary problem admits a global classical solution that is bounded; moreover, a critical mass phenomenon was analytically observed: If \(\chi \) is appropriately small, then the solution will approach spatially constant nontrivial equilibria in the large time limit provided that \(\bar{u}_0:=|\Omega |^{-1}\int _\Omega u_0<1\), whereas the solution will converge to its large time limit \((\bar{ u}_0, 0, 0)\) in the case \(\bar{u}_0\ge 1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25, 1663–1763 (2015)

    Article  MathSciNet  Google Scholar 

  2. Cui, S., Escher, J.: Bifurcation analysis of an elliptic free boundary problem modelling the growth of avascular tumors. SIAM J. Math. Anal. 39, 210–235 (2007)

    Article  MathSciNet  Google Scholar 

  3. Cui, S., Escher, J.: Well-posedness and stability of a multi-dimensional tumor growth model. Arch. Ration. Mech. Anal. 191, 173–193 (2009)

    Article  MathSciNet  Google Scholar 

  4. Cosner, C.: Reaction-diffusion-advection models for the effects and evolution of dispersal. Discrete Contin. Dyn. Syst. 34, 1701–1745 (2014)

    Article  MathSciNet  Google Scholar 

  5. Dal Passo, R., Garcke, H., Grün, G.: On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions. SIAM J. Math. Anal. 29(2), 321–342 (1998)

    Article  MathSciNet  Google Scholar 

  6. Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R.E., Kessler, J.O.: Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, 098103-1-4 (2004)

    Article  Google Scholar 

  7. Friedman, A., Hu, B.: Bifurcation from stability to instability for a free boundary problem arising in a tumor model. Arch. Ration. Mech. Anal. 180, 293–330 (2006)

    Article  MathSciNet  Google Scholar 

  8. Greenspan, H.P.: On the growth of cell culture and solid tumors. J. Theor. Biol. 56, 229–242 (1976)

    Article  MathSciNet  Google Scholar 

  9. Hambrock, R., Lou, Y.: The evolution of conditional dispersal strategies in spatially heterogeneous habitats. Bull. Math. Biol. 71, 1793–1817 (2009)

    Article  MathSciNet  Google Scholar 

  10. Hao, W., Hauenstein, J.D., Hu, B., McCoy, T., Sommese, A.J.: Computing steady-state solutions for a free boundary problem modeling tumor growth by Stokes equation. J. Comput. Appl. Math. 237, 326–334 (2013)

    Article  MathSciNet  Google Scholar 

  11. Huang, Y., Zhang, Z., Hu, B.: Bifurcation for a free-boundary tumor model with angiogenesis. Nonlinear Anal. Real World Appl. 35, 483–502 (2017)

    Article  MathSciNet  Google Scholar 

  12. He, X., Zheng, S.: Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis. Appl. Math. Lett. 49, 73–77 (2015)

    Article  MathSciNet  Google Scholar 

  13. Herrero, M.A., Velázquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Scuola Normale Superiore Pisa 24, 633–683 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Hillen, T., Painter, K.J.: A users’ guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MathSciNet  Google Scholar 

  15. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    Article  MathSciNet  Google Scholar 

  16. Jin, H.-Y., Wang, Z.-A.: Global stability of prey-taxis systems. J. Differ. Equ. 262, 1257–1290 (2017)

    Article  MathSciNet  Google Scholar 

  17. Kareiva, P., Odell, G.: Swarms of predators exhibit ‘preytaxis’ if individual predators use arearestricted search. Am. Nat. 130, 233–270 (1987)

    Article  Google Scholar 

  18. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MathSciNet  Google Scholar 

  19. Lions, P.L.: Résolution de problèmes elliptiques quasilinéaires. Arch. Ration. Mech. Anal. 74, 335–353 (1980)

    Article  Google Scholar 

  20. Lou, Y., Ni, W.-M.: Diffusion, self-diffusion and cross-diffusion. J. Differ. Equ. 131, 79–131 (1996)

    Article  MathSciNet  Google Scholar 

  21. Mahlbacher, G.E., Reihmer, K.C., Frieboes, H.B.: Mathematical modeling of tumor–immune cell interacions. J. Theor. Biol. 469, 47–60 (2019)

    Article  Google Scholar 

  22. Painter, K.J.: Continuous models for cell migration in tissues and applications to cell sorting via differential chemotaxis. Bull. Math. Biol. 71, 1117–1147 (2009)

    Article  MathSciNet  Google Scholar 

  23. Rosen, G.: Steady-state distribution of bacteria chemotactic toward oxygen. Bull. Math. Biol. 40, 641–674 (1978)

    MathSciNet  MATH  Google Scholar 

  24. Tao, Y.: Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis. Nonlinear Anal. Real World Appl. 11, 2056–2064 (2010)

    Article  MathSciNet  Google Scholar 

  25. Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    Article  MathSciNet  Google Scholar 

  26. Tao, Y., Winkler, M.: Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant. J. Differ. Equ. 252, 2520–2543 (2012)

    Article  MathSciNet  Google Scholar 

  27. Tao, Y., Winkler, M.: Global smooth solvability of a parabolic-elliptic nutrient taxis system in domains of arbitrary dimension. J. Differ. Equ. 267, 388–406 (2019)

    Article  MathSciNet  Google Scholar 

  28. Tao, Y., Winkler, M.: Boundedness and stabilization in a population model with cross-diffusion for one species. Proc. Lond. Math. Soc. 3(119), 1598–1632 (2019)

    Article  Google Scholar 

  29. Tello, J.I., Wrzosek, D.: Predator-prey model with diffusion and indirect prey-taxis. Math. Models Methods Appl. Sci. 26, 2129–2162 (2016)

    Article  MathSciNet  Google Scholar 

  30. Tindall, M.J., Maini, P.K., Porter, S.L., Armitage, J.P.: Overview of mathematical approaches used to model bacterial chemotaxis. II. Bacterial populations. Bull. Math. Biol. 70, 1570–1607 (2008)

    Article  MathSciNet  Google Scholar 

  31. Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C.W., Kessler, J.O., Goldstein, R.E.: Bacterial swimming and oxygen transport near contact lines. Proc. Natl. Acad. Sci. U.S.A. 102, 2277–2282 (2005)

    Article  Google Scholar 

  32. Wang, J.P., Wang, M.X.: The dynamics of a predator-prey model with diffusion and indirect prey-taxis. J. Dyn. Differ. Equ. 32, 1291–1310 (2020)

    Article  MathSciNet  Google Scholar 

  33. Winkler, M.: Global large-data solutions in a chemotaxis-(Navier–)Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equ. 37, 319–351 (2012)

    Article  MathSciNet  Google Scholar 

  34. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013). arXiv:1112.4156v1

  35. Winkler, M.: Asymptotic homogenization in a three-dimensional nutrient taxis system involving food-supported proliferation. J. Differ. Equ. 263, 4826–4869 (2017)

    Article  MathSciNet  Google Scholar 

  36. Wu, S., Shi, J., Wu, B.: Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis. J. Differ. Equ. 260, 5847–5874 (2016)

    Article  MathSciNet  Google Scholar 

  37. Xiang, T.: Global dynamics for a diffusive predator-prey model with prey-taxis and classical Lotka–Volterra kinetics. Nonlinear Anal. Real World Appl. 39, 278–299 (2018)

    Article  MathSciNet  Google Scholar 

  38. Zhao, X.E., Hu, B.: The impact of time delay in a tumor model. Nonlinear Anal. Real World Appl. 51, 103015 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Y. Tao acknowledges support of the National Natural Science Foundation of China (No. 11861131003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youshan Tao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, B., Tao, Y. Critical mass of lymphocytes for the coexistence in a chemotaxis system modeling tumor–immune cell interactions. Z. Angew. Math. Phys. 71, 167 (2020). https://doi.org/10.1007/s00033-020-01405-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01405-6

Keywords

Mathematics Subject Classification

Navigation