Skip to main content
Log in

A nonlinear spectral rate-dependent constitutive equation for electro-viscoelastic solids

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this communication a spectral constitutive equation for nonlinear viscoelastic-electroactive bodies with short-term memory response is developed, using the total stress formulation and the electric field as the electric independent variable. Spectral invariants, each one with a clear physical meaning and hence attractive for use in experiment, are used in the constitutive equation. A specific form for constitutive equation containing single-variable functions is presented, which are easy to analyze compared to multivariable functions. The effects of viscosity and an electric field are studied via the results of boundary value problems for cases considering homogeneous distributions for the strains and the electric field, and some these results are compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ask, A., Menzel, A., Ristinmaa, M.: Electrostriction in electro-viscoelastic polymers. Mech. Mater. 50, 9–21 (2012)

    Google Scholar 

  2. Ask, A., Menzel, A., Ristinmaa, M.: Phenomenological modeling of viscous electrostrictive polymers. Int. J. Nonlinear Mech. 47, 156–165 (2012)

    Google Scholar 

  3. Bar-Cohen, Y.: Electrostictive polymers: current capabilities and challenges. In: Proceedings of the SPIE Smart Structures and Materials Symposium, EAPAD Conference, San Diego, CA, Paper 4695-02 (2002)

  4. Bossis, G., Abbo, C., Cutillas, S., Lacis, C., Métayer, C.: Electroactive and electrostructures elastomers. Int. J. Mod. Phys. B 15, 564–573 (2001)

    Google Scholar 

  5. Büschel, A., Klinkel, S., Wagner, W.: Dielectric elastomers. Numerical modeling of nonlinear visco-electroelasticity. Int. J. Numer. Methods Eng. 93, 834–856 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Bustamante, R., Shariff, M.H.B.M.: New sets of invariants for an electro-elastic body with one and two families of fibres. Eur. J. Mech. A-Solid 58, 42–53 (2016)

    MATH  Google Scholar 

  7. Canzız, B., Dal, H., Kaliske, M.: Computational cardiology: a modified Hill model to describe the electro-visco-elasticity of the myocardium. Comput. Methods Appl. Mech. Eng. 315, 434–466 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Chen, X.: Nonlinear electro-thermo-viscoelasticity. Acta Mech. 211, 49–59 (2010)

    MATH  Google Scholar 

  9. Denzer, R., Menzel, A.: Configurational forces for quasi-incompressible large strain electro-viscoelasticity. Applications to fracture mechanics. Eur. J. Mech. A-Solids 48, 3–15 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Dorfmann, A., Ogden, R.W.: Nonlinear electroelasticity. Acta Mech. 174, 167–183 (2005)

    MATH  Google Scholar 

  11. Dorfmann, A., Ogden, R.W.: Nonlinear electroelastic deformations. J. Elast. 82, 99–127 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Fang, D.N., Soh, A.K., Li, C.Q., Jiang, B.: Nonlinear behavior of 0–3 type ferroelectric composites with polymer matrices. J. Mater. Sci. 36, 5281–5288 (2001)

    Google Scholar 

  13. Gizzia, A., Anna Pandolf, A.: Visco-hyperelasticity of electro-active soft tissues. Procedia IUTAM 12, 162–175 (2015)

    Google Scholar 

  14. Holzapfel, G.A., Ogden, R.W.: On planar biaxial tests for anisotropic nonlinearly elastic solids: a continuum mechanical framework. Math. Mech. Solids 14, 474–489 (2009)

    MATH  Google Scholar 

  15. Jones, D.F., Treloar, L.R.G.: The properties of rubber in pure homogeneous strain. J. Phys. D Appl. Phys. 8(11), 1285–1304 (1975)

    Google Scholar 

  16. Hong, W.: Modeling viscoelastic dielectrics. J. Mech. Phys. Solids 59, 637–650 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Khan, K., Wufai, H., El Sayed, T.: A variational constitutive framework for the nonlinear viscoelastic response of a dielectric elastomer. Comput. Mech. 52, 345–360 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Kovetz, A.: Electromagnetic Theory. University Press, Oxford (2000)

    MATH  Google Scholar 

  19. Mehnert, M., Hossain, M., Steinmann, P.: Numerical modeling of thermo-electro-viscoelasticity with field dependent material parameters. Int. J. Nonlinear Mech. 106, 13–24 (2018)

    Google Scholar 

  20. Mehnert, M., Hossain, M., Steinmann, P.: Experimental and numerical investigations of the electro-viscoelastic behavior of VHB 4905\(^{TM}\). Eur. J. Mech./ A Solids 77, 103797 (2019)

    MATH  Google Scholar 

  21. Murphy, J.G., Biwa, S.: The counterintuitive mechanical response in simple tension of arterial models that are separable functions of the \(I_1, I_4, I_6\) invariants. Int. J. Nonlinear Mech. 90, 72–81 (2017)

    Google Scholar 

  22. Ogden, R.W.: Non-Linear Elastic Deformations. Ellis Horwood, Chichester (1984)

    MATH  Google Scholar 

  23. Ogden, R.W., Steigmann, D.J.: Mechanics and Electrodynamics of Magneto- and Electro-elastic Materials. CISM Courses and Lectures Series, vol. 527. Springer, Wien (2011)

    MATH  Google Scholar 

  24. Pioletti, D.P., Rakotomanana, L.R.: Non-linear viscoelastic laws for soft biological tissues. Eur. J. Mech. A-Solid 19(5), 749–759 (2000)

    MATH  Google Scholar 

  25. Saxena, P., Vu, D.K., Steinmann, P.: On rate-dependent dissipation effects in electro-elasticity. Int. J. Nonlinear Mech. 62, 1–11 (2014)

    Google Scholar 

  26. Shariff, M.H.B.M.: Strain energy function for filled and unfilled rubberlike material. Rubber Chem. Technol. 73, 1–21 (2000)

    Google Scholar 

  27. Shariff, M.H.B.M.: Nonlinear transversely isotropic elastic solids: an alternative representation. Q. J. Mech. Appl. Math. 61, 129–149 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Shariff, M.H.B.M.: Physical invariants for nonlinear orthotropic solids. Int. J. Solids Struct. 48, 1906–1914 (2011)

    Google Scholar 

  29. Shariff, M.H.B.M.: Physical invariant strain energy function for passive myocardium. Biomech. Model. Mechanobiol. 12(2), 215–223 (2013)

    Google Scholar 

  30. Shariff, M.H.B.M.: The number of independent invariants of an n-preferred direction anisotropic solid. Math. Mech. Solids 22(10), 1989–1996 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Shariff, M.H.B.M.: Anisotropic separable free energy functions for elastic and non-elastic solids. Acta Mech. 227(11), 3213–3237 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Shariff, M.H.B.M., Bustamante, R., Merodio, J.: On the spectral analysis of residual stress in finite elasticity. IMA J. Appl. Math. 82(3), 656–680 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Shariff, M.H.B.M., Bustamante, R., Merodio, J.: Rate type constitutive equations for fiber reinforced nonlinearly viscoelastic solids using spectral invariants. Mech. Res. Commun. 84, 60–64 (2017)

    Google Scholar 

  34. Shariff, M.H.B.M.: On the spectral constitutive modelling of transversely isotropic soft tissue: physical invariants. Int. J. Eng. Sci. 120, 199–219 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Shariff, M.H.B.M.: Spectral derivatives in continuum mechanics. Q. J. Mech. Appl. Mech. 70(4), 479–476 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Shariff, M.H.B.M., Bustamante, R., Merodio, J.: A nonlinear electro-elastic model with residual stresses and a preferred direction. Math. Mech. Solids 25(3), 838–865 (2020)

    MathSciNet  Google Scholar 

  37. Shariff, M.H.B.M., Bustamante, R., Merodio, J.: A nonlinear constitutive model for a two preferred direction electro-elastic body with residual stresses. Int. J. Nonlinear Mech. 119, 103352 (2020)

    Google Scholar 

  38. Shariff, M.H.B.M.: The number of independent invariants for \(n\) symmetric second order tensors. J. Elast. 134(1), 119–126 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Shariff, M.H.B.M.: The number of independent invariants for \(m\) unit vectors and \(n\) symmetric second order tensors is \(2m+ 6n-3\). arXiv preprint arXiv:1907.09941 (2019)

  40. Shariff, M.H.B.M.: A general spectral nonlinear elastic consistent tangent modulus tensor formula for finite element software. Results Appl. Math. 7, 100113 (2020)

    Google Scholar 

  41. Spencer, A.J.M.: Theory of invariants. In: Eringen, A.C. (ed.) Continuum Physics I, pp. 239–253. Academic Press, New York (1971)

    Google Scholar 

  42. Truesdell, C.A., Toupin, R.: The classical field theories. In: Flügge, S. (ed.) Handbuch der Physik, vol. III/1, pp. 226–902. Springer, Berlin (1960)

    Google Scholar 

  43. Vogel, F., Göktepe, S., Steinmann, P., Kuhl, E.: Modeling and simulation of viscous electro-active polymer. Eur. J. Mech. A-Solids 48, 112–128 (2014)

    MathSciNet  MATH  Google Scholar 

  44. Wang, S., Decker, M., Henann, D.L., Chester, S.A.: Modeling of dielectric viscoelastomers with applications to electromechanical instabilities. J. Mech. Phys. Solids 95, 213–229 (2016)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. B. M. Shariff.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: P-property

Appendix: P-property

The description of the P-property uses the eigenvalues (\(\lambda _i\)) and eigenvectors (\({\textit{\textbf{u}}}_i\)) of the symmetric tensor \({\textit{\textbf{U}}}\). A general anisotropic scalar function \(\Phi \), such as that given in (37) and (45), where its arguments are expressed in terms spectral invariants with respect to the basis \(\{{\textit{\textbf{u}}}_1,{\textit{\textbf{u}}}_2, {\textit{\textbf{u}}}_3 \}\) can be written in the form

$$\begin{aligned} \Phi = {\tilde{W}}(\lambda _1,\lambda _2,\lambda _3,{\textit{\textbf{u}}}_1,{\textit{\textbf{u}}}_2,{\textit{\textbf{u}}}_3), \end{aligned}$$
(130)

with the symmetrical property

$$\begin{aligned} {\tilde{W}}(\lambda _1,\lambda _2,\lambda _3,{\textit{\textbf{u}}}_1,{\textit{\textbf{u}}}_2,{\textit{\textbf{u}}}_3) = {\tilde{W}}(\lambda _2,\lambda _1,\lambda _3,{\textit{\textbf{u}}}_2,{\textit{\textbf{u}}}_1,{\textit{\textbf{u}}}_3) = {\tilde{W}}(\lambda _3,\lambda _2,\lambda _1,{\textit{\textbf{u}}}_3,{\textit{\textbf{u}}}_2,{\textit{\textbf{u}}}_1) . \end{aligned}$$
(131)

In view of the non-unique values of \({\textit{\textbf{u}}}_i\) and \({\textit{\textbf{u}}}_j\) when \(\lambda _i=\lambda _j\), a function \({\tilde{W}}\) should be independent of \({\textit{\textbf{u}}}_i\) and \({\textit{\textbf{u}}}_j\) when \(\lambda _i=\lambda _j\), and \({\tilde{W}}\) should be independent of \({\textit{\textbf{u}}}_1\), \({\textit{\textbf{u}}}_2\) and \({\textit{\textbf{u}}}_3\) when \(\lambda _1=\lambda _2=\lambda _3\). Hence, when two or three of the principal stretches have equal values the scalar function \(\Phi \) must have any of the following forms

$$\begin{aligned} \Phi = \left\{ \begin{array}{ll} {W}_{(a)}(\lambda ,\lambda _k,{\textit{\textbf{u}}}_k) , &{} \hbox {when} \, \, \lambda _i=\lambda _j=\lambda , i\ne j \ne k \ne i \\ {W}_{(b)}(\lambda ) , &{} \hbox {when} \, \, \lambda _1=\lambda _2=\lambda _3=\lambda \end{array}\right. \end{aligned}$$
(132)

As an example of (132), consider \({\displaystyle \Phi ={{{\textit{\textbf{a}}}}}\bullet {{{\textit{\textbf{C}}}}}{{{\textit{\textbf{a}}}}}=\sum _{i=1}^3 \lambda _i^2 ({{{\textit{\textbf{a}}}}}\bullet {{{\textit{\textbf{u}}}}}_i)^2 }\), where \({\textit{\textbf{a}}}\) is a fixed unit vector and \({\displaystyle \sum _{i=1} ({{{\textit{\textbf{a}}}}}\bullet {{{\textit{\textbf{u}}}}}_i)^2 = 1}\). If \(\lambda _1=\lambda _2=\lambda \), we have \({\displaystyle \Phi = {W}_{(a)}(\lambda ,\lambda _3,{{{\textit{\textbf{u}}}}}_3) =\lambda ^2 + (\lambda _3^2 - \lambda ^2)({{{\textit{\textbf{a}}}}}\bullet {{{\textit{\textbf{u}}}}}_3)^2}\) and in the case of \(\lambda _1=\lambda _2=\lambda _3=\lambda \), \(\Phi ={W}_{(b)}(\lambda ) = \lambda ^2\). Note that, for example, \({\displaystyle {{{\textit{\textbf{C}}}}}= \sum _{i=1}^3 \lambda _i^2 {{{\textit{\textbf{u}}}}}_i\otimes {{{\textit{\textbf{u}}}}}_i}\) (or \({\textit{\textbf{U}}}\) ) and all the classical invariants described in Spencer [41] , satisfy the P-property. In Refs.  [35] and [40], the P-property described here is extended to non-symmetric tensors such as the two-point deformation tensor \({\textit{\textbf{F}}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shariff, M.H.B.M., Bustamante, R. & Merodio, J. A nonlinear spectral rate-dependent constitutive equation for electro-viscoelastic solids. Z. Angew. Math. Phys. 71, 126 (2020). https://doi.org/10.1007/s00033-020-01353-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01353-1

Keywords

Mathematics Subject Classification

Navigation