Skip to main content
Log in

Stabilization of the wave equation with a localized nonlinear strong damping

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We consider a locally damped wave equation in a bounded domain. The damping is nonlinear, involves the Laplace operator, and is localized in a suitable open subset of the domain under consideration. First, we discuss the well-posedness and regularity of the solutions of the system by using a combination of the nonlinear semigroup theory and the Faedo–Galerkin scheme. Then, using the energy method combined with the piecewise multipliers method and relying on the localized smoothing property, we derive the exponential decay of the energy when the nonlinear damping grows linearly, the damping coefficient is smooth enough and further satisfies a structural condition; this is in agreement with what is known in the case of a linear damping of Kelvin–Voigt type. The novelty of our approach lies on the fact that: (1) we are using a nonlinear damping, which makes it trickier to study the regularity of solutions as well as the exploitation of the localized smoothness property, in order to prove that the energy decays exponentially; (2) the energy estimates are carried out directly in the time domain, unlike the frequency domain method utilized in all earlier works on the stabilization of the wave equation involving a localized Kelvin–Voigt damping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alabau-Boussouira, F.: A unified approach via convexity for optimal energy decay rates of finite and infinite dimensional vibrating damped systems with applications to semi-discretized vibrating damped systems. J. Differ. Equ. 248, 1473–1517 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Alabau-Boussouira, F., Ammari, K.: Sharp energy estimates for nonlinearly locally damped PDEs via observability for the associated undamped system. J. Funct. Anal. 260, 2424–2450 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Banks, H.T., Smith, R.C., Wang, Y.: Modeling aspects for piezoelectric patch actuation of shells, plates and beams. Q. Appl. Math. 53, 353–381 (1995)

    Google Scholar 

  4. Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control and stabilization from the boundary. SIAM J. Control Opt. 30, 1024–1065 (1992)

    MathSciNet  MATH  Google Scholar 

  5. Bellassoued, M.: Decay of solutions of the wave equation with arbitrary localized nonlinear damping. J. Differ. Equ. 211, 303–332 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Bociu, L., Lasiecka, I.: Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping. J. Differ. Equ. 249, 654–683 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Brezis, H.: Analyse Fonctionnelle. Théorie et Applications. Masson, Paris (1983)

    MATH  Google Scholar 

  8. Burq, N., Christianson, H.: Imperfect geometric control and overdamping for the damped wave equation. Commun. Math. Phys. 336, 101–130 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Cavalcanti, M.M., Oquendo, H.P.: Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J. Control Optim. 42, 1310–1324 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Lasiecka, I.: Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction. J. Differ. Equ. 236, 407–459 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Martinez, P.: Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term. J. Differ. Equ. 203, 119–158 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Tebou, L.: Stabilization of the wave equation with localized compensating frictional and Kelvin–Voigt dissipating mechanisms. Electron. J. Differ. Equ., Paper No. 83 (2017)

  13. Chen, G.: Control and stabilization for the wave equation in a bounded domain. SIAM J. Control Optim. 17, 66–81 (1979)

    MathSciNet  MATH  Google Scholar 

  14. Chen, G., Fulling, S.A., Narcowich, F.J., Sun, S.: Exponential decay of energy of evolution equations with locally distributed damping. SIAM J. Appl. Math. 51, 266–301 (1991)

    MathSciNet  MATH  Google Scholar 

  15. Dafermos, C.M.: Asymptotic behaviour of solutions of evolution equations. In: Crandall, M.G. (ed.) Nonlinear Evolution Equations, pp. 103–123. Academic Press, New York (1978)

    Google Scholar 

  16. Guesmia, A.: A new approach of stabilization of nondissipative distributed systems. SIAM J. Control Optim. 42, 24–52 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Haraux, A.: Oscillations Forcées pour Certains Systèmes Dissipatifs Nonlinéaires, Publications du Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie, Paris, No. 78010 (1978)

  18. Haraux, A.: Stabilization of trajectories for some weakly damped hyperbolic equations. J. Differ. Equ. 59, 145–154 (1985)

    MathSciNet  MATH  Google Scholar 

  19. Haraux, A.: Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps. Port. Math. 46, 245–258 (1989)

    MATH  Google Scholar 

  20. Komornik, V., Zuazua, E.: A direct method for the boundary stabilization of the wave equation. J.M.P.A 69, 33–54 (1990)

    MathSciNet  MATH  Google Scholar 

  21. Komornik, V.: Exact Controllability and Stabilization. The Multiplier Method. RAM, Masson & John Wiley, Paris (1994)

    MATH  Google Scholar 

  22. Komornik, V., Kouémou-Patcheu, S.: Well-posedness and decay estimates for a Petrovsky system with internal damping. Adv. Math. Sci. Appl. 7, 245–260 (1997)

    MathSciNet  MATH  Google Scholar 

  23. Lagnese, J.: Decay of solutions of wave equations in a bounded region with boundary dissipation. J. Differ. Equ. 50, 163–182 (1983)

    MathSciNet  MATH  Google Scholar 

  24. Lasiecka, I., Tataru, D.: Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Differ. Integral Equ. 6, 507–533 (1993)

    MathSciNet  MATH  Google Scholar 

  25. Lasiecka, I., Toundykov, D.: Energy decay rates for the semilinear wave equation with nonlinear localized damping and source terms. Nonlinear Anal. 64, 1757–1797 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Lebeau, G.: Equation des ondes amorties. Algebraic and Geometric Methods in Mathematical Physics (Kaciveli, 1993). Mathematical Physics Studies, vol. 19, pp. 73–109. Kluwer Acad. Publ., Dordrecht (1996)

    Google Scholar 

  27. Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod-Gauthier-villars, Paris (1969)

    MATH  Google Scholar 

  28. Lions, J.L.: Contrôlabilité exacte, perturbations et stabilisation des systèmes distribués, RMA 8, vol. 1. Masson, Paris (1988)

    Google Scholar 

  29. Liu, K.: Locally distributed control and damping for the conservative systems. S.I.A.M J. Control Opt. 35, 1574–1590 (1997)

    MathSciNet  MATH  Google Scholar 

  30. Liu, K., Liu, Z.: Exponential decay of energy of the Euler–Bernoulli beam with locally distributed Kelvin–Voigt damping. S.I.A.M J. Control Opt. 36(3), 1086–1098 (1998)

    MathSciNet  MATH  Google Scholar 

  31. Liu, K., Rao, B.: Exponential stability for the wave equations with local Kelvin–Voigt damping. Z. Angew. Math. Phys. 57, 419–432 (2006)

    MathSciNet  MATH  Google Scholar 

  32. Martinez, P.: Stabilisation de systèmes distribués semi-linéaires: domaines presque étoilées et inégalités intégrales généralisées. Ph.D Thesis. University of Strasbourg, France (1998)

  33. Martinez, P.: A new method to obtain decay rate estimates for dissipative systems. ESAIM Control Optim. Calc. Var. 4, 419–444 (1999)

    MathSciNet  MATH  Google Scholar 

  34. Martinez, P.: Stabilization for the wave equation with Neumann boundary condition by a locally distributed damping. Contrôle des systèmes gouvernés par des équations aux dérivées partielles (Nancy, 1999) (electronic), ESAIM Proceedings, vol. 8, pp. 119–136. Soc. Math. Appl. Indust., Paris (2000)

    MathSciNet  MATH  Google Scholar 

  35. Nakao, M.: Asymptotic stability for some nonlinear evolution equations of second order with unbounded dissipative terms. J. Differ. Equ. 30, 54–63 (1978)

    MathSciNet  MATH  Google Scholar 

  36. Nakao, M.: Stabilization of local energy in an exterior domain for the wave equation with a localized dissipation. J. Differ. Equ. 148, 388–406 (1998)

    MathSciNet  MATH  Google Scholar 

  37. Nirenberg, L.: On elliptic partial differential equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Ser. 13, 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  38. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

    MATH  Google Scholar 

  39. Rauch, J., Taylor, M.: Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana Univ. Math. J. 24, 79–86 (1974)

    MathSciNet  MATH  Google Scholar 

  40. Renardy, M.: On localized Kelvin–Voigt damping. ZAMM Z. Angew. Math. Mech. 84, 280–283 (2004)

    MathSciNet  MATH  Google Scholar 

  41. Russell, D.L.: Controllability and stabilizability theory for linear partial differential equations: recent progress and open problems. SIAM Rev. 20, 639–739 (1978)

    MathSciNet  MATH  Google Scholar 

  42. Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Mat. Pura Appl. (4) 146, 65–96 (1987)

    MathSciNet  MATH  Google Scholar 

  43. Slemrod, M.: Weak asymptotic decay via a “relaxed invariance principle” for a wave equation with nonlinear, nonmonotone damping. Proc. R. Soc. Edinb. Sect. A 113, 87–97 (1989)

    MathSciNet  MATH  Google Scholar 

  44. Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Mathematical Surveys and Monographs, vol. 49. American Mathematical Society, Providence (1997)

    Google Scholar 

  45. Tcheugoué Tébou, L.R.: Stabilization of the wave equation with localized nonlinear damping. J. Differ. Equ. 145, 502–524 (1998)

    MathSciNet  MATH  Google Scholar 

  46. Tcheugoué Tébou, L.R.: Well-posedness and energy decay estimates for the damped wave equation with \(\text{ L }^r\) localizing coefficient. Commun. P.D.E. 23, 1839–1855 (1998)

    MATH  Google Scholar 

  47. Tebou, L.: A Carleman estimates based approach for the stabilization of some locally damped semilinear hyperbolic equations. ESAIM Control Optim. Calc. Var. 14, 561–574 (2008)

    MathSciNet  MATH  Google Scholar 

  48. Tebou, L.: A constructive method for the stabilization of the wave equation with localized Kelvin–Voigt damping. C. R. Acad. Sci. Paris Ser. I 350, 603–608 (2012)

    MathSciNet  MATH  Google Scholar 

  49. Tebou, L.: Simultaneous observability and stabilization of some uncoupled wave equations. C. R. Acad. Sci. Paris Ser. I 350, 57–62 (2012)

    MathSciNet  MATH  Google Scholar 

  50. Tebou, L.: Stabilization of some elastodynamic systems with localized Kelvin–Voigt damping. DCDS-A 7117–7136 (2016)

    MathSciNet  MATH  Google Scholar 

  51. Zuazua, E.: Exponential decay for the semilinear wave equation with locally distributed damping. Commun. P.D.E. 15, 205–235 (1990)

    MathSciNet  MATH  Google Scholar 

  52. Zuazua, E.: Exponential decay for the semilinear wave equation with localized damping in unbounded domains. J. Math. Pures Appl. 70, 513–529 (1991)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Tebou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tebou, L. Stabilization of the wave equation with a localized nonlinear strong damping. Z. Angew. Math. Phys. 71, 22 (2020). https://doi.org/10.1007/s00033-019-1240-x

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1240-x

Keywords

Mathematics Subject Classification

Navigation