Skip to main content
Log in

Boundedness in a two-dimensional Keller–Segel–Navier–Stokes system involving a rapidly diffusing repulsive signal

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper is concerned with the Keller–Segel–Navier–Stokes system

$$\begin{aligned} \left\{ \begin{array}{lcll} n_t + u\cdot \nabla n &{}=&{} \Delta n + \nabla \cdot (n\nabla c), \qquad &{} x\in \Omega , \ t>0, \\ u\cdot \nabla c &{}=&{} \Delta c -c+n, \qquad &{} x\in \Omega , \ t>0, \\ u_t + (u\cdot \nabla ) u &{}=&{} \Delta u + \nabla P + n\nabla \Phi , \qquad \nabla \cdot u=0, \qquad &{} x\in \Omega , \ t>0, \end{array} \right. \qquad \qquad (\star ) \end{aligned}$$

with a given smooth gravitational potential \(\Phi \). It is shown that for all suitably regular initial data, a corresponding no-flux/no-flux/Dirichlet initial boundary value problem posed in a smoothly bounded planar domain admits a uniquely determined global classical solution (ncuP) which has the additional property that n remains uniformly bounded. This partially goes beyond a recent result asserting global classical solvability, but without any boundedness information, in a related slightly more complex variant of (\(\star \)) accounting for parabolic evolution of the quantity c. In particular, the obtained outcome therefore provides further evidence indicating that the considered fluid interaction does not substantially reduce a certain explosion-avoiding character of the Keller–Segel-type chemorepulsion mechanisms, as known to form an essential feature of corresponding fluid-free analogues. The reasoning at its core relies on the use of a quasi-Lyapunov inequality which operates at regularity levels that seem rather unusual in this and related contexts, but which in the considered two-dimensional setting can be seen to serve as a starting point sufficient for a bootstrap-type series of arguments, finally providing global boundedness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellomo, N., Bellouquid, A., Chouhad, N.: From a multiscale derivation of nonlinear cross-diffusion models to Keller–Segel models in a Navier–Stokes fluid. Math. Mod. Methods Appl. Sci. 26, 2014–2069 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Black, T.: Global very weak solutions to a chemotaxis-fluid system with nonlinear diffusion. SIAM J. Math. Anal. 50, 4087–4116 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Cao, X., Lankeit, J.: Global classical small-data solutions for a three-dimensional chemotaxis Navier–Stokes system involving matrix-valued sensitivities. Calc. Var. Part. Differ. Equ. 55, 107 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Cieślak, T., Morales Rodrigo, C., Laurençot, Ph.: Global existence and convergence to steady states in a chemorepulsion system. Parabolic and Navier–Stokes equations. Part 1, 105–117, Banach Center Publ. 81, Part 1, Polish Acad. Sci. Inst. Math., Warsaw (2008)

  5. Cieślak, T., Stinner, C.: Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions. J. Differ. Equ. 252(10), 5832–5851 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Coll, J., et al.: Chemical aspects of mass spawning in corals. I. Sperm-attractant molecules in the eggs of the scleractinian coral montipora digitata. Mar. Biol. 118, 177–182 (1994)

    Google Scholar 

  7. Deshmane, S.L., Kremlev, S., Amini, S., Sawaya, B.E.: Monocyte chemoattractant protein-1 (mcp-1): an overview. J. Interferon Cytokine Res. 29, 313–326 (2009)

    Google Scholar 

  8. DiFrancesco, M., Lorz, A., Markowich, P.A.: Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior. Discrete Contin. Dyn. Syst. 28, 1437–1453 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Duan, R.J., Lorz, A., Markowich, P.A.: Global solutions to the coupled chemotaxis-fluid equations. Commun. Part. Differ. Equ. 35, 1635–1673 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Duan, R., Xiang, Z.: A Note on global existence for the Chemotaxis–Stokes model with nonlinear diffusion. Int. Math. Res. Notices (2012). https://doi.org/10.1093/imrn/rns270

    Article  MATH  Google Scholar 

  11. Freitag, M.: Global existence and boundedness in a chemorepulsion system with superlinear diffusion. Discrete Cont. Dyn. Syst. 38, 5943–5961 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Friedman, A.: Partial Differential Equations. Holt, Rinehart & Winston, New York (1969)

    MATH  Google Scholar 

  13. Fujie, K., Ito, A., Winkler, M., Yokota, T.: Stabilization in a chemotaxis model for tumor invasion. Discrete Cont. Dyn. Syst. 36, 151–169 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Giga, Y.: The Stokes operator in \(L_r\) spaces. Proc. Jpn. Acad. Ser. A Math. Sci. 2, 85–89 (1981)

    MATH  Google Scholar 

  15. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)

    MATH  Google Scholar 

  16. He, S., Tadmor, E.: Suppressing chemotactic blow-up through a fast splitting scenario on the plane. Arch. Ration. Mech. Anal. 232(2), 951–986 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Henry, D.: Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)

    MATH  Google Scholar 

  18. Herrero, M.A., Velázquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Sc. Norm. Super. Pisa Cl. Sci. 24, 633–683 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Kiselev, A., Ryzhik, L.: Biomixing by chemotaxis and enhancement of biological reactions. Commun. Part. Differ. Equ. 37(1–3), 298–318 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Kiselev, A., Ryzhik, L.: Biomixing by chemotaxis and efficiency of biological reactions: the critical reaction case. J. Math. Phys. 53(11), 115609 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Kiselev, A., Xu, X.: Suppression of chemotactic explosion by mixing. Arch. Ration. Mech. Anal. 222, 1077–1112 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Kozono, H., Miura, M., Sugiyama, Y.: Existence and uniqueness theorem on mild solutions to the Keller–Segel system coupled with the Navier–Stokes fluid. J. Funct. Anal. 270, 1663–1683 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Lai, Y., Xiao, Y.: Existence and asymptotic behavior of global solutions to chemorepulsion systems with nonlinear sensitivity. Electron. J. Differ. Equ. 2017, 254 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Lankeit, J.: Long-term behaviour in a chemotaxis-fluid system with logistic source. Math. Models Methods Appl. Sci. 26, 2071–2109 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Lankeit, J.: Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller–Segel system. Discr. Cont. Dyn. Syst. S 13(2), 233–255 (2020)

    MathSciNet  Google Scholar 

  26. Liu, J., Wang, Y.: Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equ. 262, 5271–5305 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Lorz, A.: Coupled Keller–Segel–Stokes model: global existence for small initial data and blow-up delay. Commun. Math. Sci. 10, 555–574 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Miller, R.L.: Demonstration of sperm chemotaxis in echinodermata: Asteroidea, holothuroidea, ophiuroidea. J. Exp. Zool. 234, 383–414 (1985)

    Google Scholar 

  29. Nagai, T.: Blowup of nonradial solutions to parabolic–elliptic systems modeling chemotaxis in two-dimensional domains. J. Inequal. Appl. 6, 37–55 (2001)

    MathSciNet  MATH  Google Scholar 

  30. Sohr, H.: The Navier–Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser, Basel (2001)

    MATH  Google Scholar 

  31. Tao, Y., Winkler, M.: Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant. J. Differ. Equ. 252, 2520–2543 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Tao, Y., Winkler, M.: Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system. Z. Angew. Math. Phys. 66, 2555–2573 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Tao, Y.: Blow-up prevention by quadratic degradation in a two-dimensional Keller–Segel–Navier–Stokes system. Z. Angew. Math. Phys. 67, 138 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Tao, Y., Winkler, M.: Locally bounded global solutions in a three-dimensional Chemotaxis-Stokes system with nonlinear diffusion. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 30, 157–178 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Tao, Y.: Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity. Discrete Cont. Dyn. Syst B 18, 2705–2722 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Taub, D., Proost, P., Murphy, W., Anver, M., Longo, D., Van Damme, J., Oppenheim, J.: Monocyte chemotactic protein-1 (mcp-1),-2, and-3 are chemotactic for human t lymphocytes. J. Clin. Investig. 95, 1370 (1995)

    Google Scholar 

  37. Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C.W., Kessler, J.O., Goldstein, R.E.: Bacterial swimming and oxygen transport near contact lines. Proc. Nat. Acad. Sci. USA 102, 2277–2282 (2005)

    MATH  Google Scholar 

  38. Wang, Y., Cao, X.: Global classical solutions of a 3D chemotaxis-Stokes system with rotation. Discrete Contin. Dyn. Syst. B 20, 3235–3254 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Wang, Y., Winkler, M., Xiang, Z.: Global classical solutions in a two-dimensional chemotaxis-Navier–Stokes system with subcritical sensitivity. Ann. Sc. Norm. Super. Pisa. Cl. Sci. 18(2), 421–466 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Wang, Y., Xiang, Z.: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equ. 259, 7578–7609 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Wang, Y., Xiang, Z.: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation: the 3D case. J. Differ. Equ. 261, 4944–4973 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Winkler, M.: Global large-data solutions in a chemotaxis-(Navier–)Stokes system modeling cellular swimming in fluid drops. Commun. Part. Differ. Equ. 37, 319–351 (2012)

    MathSciNet  MATH  Google Scholar 

  43. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013). arXiv:1112.4156v1

    MathSciNet  MATH  Google Scholar 

  44. Winkler, M.: Stabilization in a two-dimensional chemotaxis-Navier–Stokes system. Arch. Ration. Mech. Anal. 211(2), 455–487 (2014)

    MathSciNet  MATH  Google Scholar 

  45. Winkler, M.: Global weak solutions in a three-dimensional chemotaxis-Navier–Stokes system. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 1329–1352 (2016)

    MathSciNet  MATH  Google Scholar 

  46. Winkler, M.: How far do chemotaxis-driven forces influence regularity in the Navier–Stokes system? Trans. Am. Math. Soc. 369, 3067–3125 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Winkler, M.: Does fluid interaction affect regularity in the three-dimensional Keller–Segel system with saturated sensitivity? J. Math. Fluid Mech. 20, 1889–1909 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Winkler, M.: Global classical solvability and generic infinite-time blow-up in quasilinear Keller–Segel systems with bounded sensitivities. J. Differ. Equ. 266, 8034–8066 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Winkler, M.: Can rotational fluxes impede the tendency toward spatial homogeneity in nutrient taxis(-Stokes) systems? Int. Math. Res. Notices (2019). https://doi.org/10.1093/imrn/rnz056

    Article  Google Scholar 

  50. Winkler, M.: Small-mass solutions in the two-dimensional Keller–Segel system coupled to the Navier-Stokes equations (Preprint)

  51. Winkler, M.: Does repulsion-type directional preference in chemotactic migration continue to regularize Keller–Segel systems when coupled to the Navier–Stokes equations? Nonlinear Differ. Equ. Appl. 26, 48 (2019)

    MathSciNet  MATH  Google Scholar 

  52. Zhang, Q., Li, Y.: Convergence rates of solutions for a two-dimensional chemotaxis-Navier–Stokes system. Discr. Cont. Dyn. Syst. B 20, 2751–2759 (2015)

    MathSciNet  MATH  Google Scholar 

  53. Zheng, J.: An optimal result for global existence and boundedness in a three-dimensional Keller–Segel–Stokes system with nonlinear diffusion. J. Differ. Equ. 267, 2385–2415 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author acknowledges support of the Deutsche Forschungsgemeinschaft in the context of the project Emergence of structures and advantages in cross-diffusion systems (No. 411007140, GZ: WI 3707/5-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Winkler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winkler, M. Boundedness in a two-dimensional Keller–Segel–Navier–Stokes system involving a rapidly diffusing repulsive signal. Z. Angew. Math. Phys. 71, 10 (2020). https://doi.org/10.1007/s00033-019-1232-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1232-x

Keywords

Mathematics Subject Classification

Navigation