Skip to main content
Log in

Thermocapillary migration of a planar droplet at small and large Marangoni numbers: effects of interfacial rheology

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, roles of interfacial rheology on thermocapillary migration of a planar droplet at small and large Marangoni numbers are analyzed. Under quasi-steady-state assumption, the time-independent momentum and energy equations of thermocapillary droplet migration with boundary conditions are determined. An exact solution of the steady thermocapillary migration of the deformed droplet at small Marangoni numbers is obtained. It is found that the deformed droplet has an oblate shape. The deviation from the circular section depends on the Weber number and the migration speed. The surface shear viscosity, the dilatational viscosity and the surface internal energy parameter affect the deformation of the droplet through reducing the migration speed. The validity of the steady thermocapillary droplet migration at small Marangoni numbers is confirmed by determining the conservative overall integral energy equations. At large Marangoni numbers, the non-conservative overall integral energy equations imply that thermocapillary droplet migration is always an unsteady process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sadhal, S.S., Ayyaswamy, P.S., Chung, J.N.: Transport Phenomena with Drops and Bubbles. Springer, New York (1997)

    Book  Google Scholar 

  2. Levich, V.G.: Physicochemical Hydrodynamics. Prentice-Hall International, Hemel Hempstead (1962)

    Google Scholar 

  3. Subramanian, R.S., Balasubramaniam, R.: The Motion of Bubbles and Drops in Reduced Gravity. Cambridge University Press, England (2001)

    MATH  Google Scholar 

  4. Young, N.O., Goldstein, J.S., Block, M.J.: The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6, 350 (1959)

    Article  Google Scholar 

  5. Subramanian, R.S.: Slow migration of a gas bubble in a thermal gradient. AIChE J. 27, 646 (1981)

    Article  Google Scholar 

  6. Subramanian, R.S., Balasubramaniam, R., Wozniak, G.: Fluid mechanics of bubbles and drops. In: Monti, R. (ed.) Physics of Fluids in Microgravity. Taylor & Francis, London (2001)

    Google Scholar 

  7. Yin, Z., Wu, Z.-B., Hu, W.R.: Chapter 2: Thermocapillary migration of drops and bubbles. In: Hu, W.R. (ed.) Advances in Microgravity Sciences. Transworld Research Network, Trivandrum (2009)

    Google Scholar 

  8. Taylor, T.D., Acrivos, A.: On the deformation and drag of a falling viscous drop at low Reynolds number. J. Fluid Mech. 18, 466 (1964)

    Article  MathSciNet  Google Scholar 

  9. Beignell, A.S.: The deformation of a liquid drop at small Reynolds number. Q. J. Mech. Appl. Math. XXVI, 99 (1973)

    Article  Google Scholar 

  10. Bratukhin, Y.K.: Thermocapillary drift of a droplet of viscous liquid. Fluid Dyn. 10, 833 (1975)

    Article  Google Scholar 

  11. Balasubtamaniam, R., Chai, A.-T.: Thermocapillary migration of droplet: an exact solution for small Marangoni numbers. J. Colloid Interface Sci. 119, 531 (1987)

    Article  Google Scholar 

  12. Edwards, D.A., Brenner, H., Wasan, D.T.: Interfacial Transport Processes and Rheology. Butterworth-Heinemann, Oxford (1961)

    Google Scholar 

  13. Scriven, L.E.: Dynamics of a fluid interface: equation of motion for newtonian surface fluids. Chem. Eng. Sci. 19, 98 (1960)

    Article  Google Scholar 

  14. Happer, J.F., Moore, D.W., Pearson, J.R.A.: The effect of the variation of surface tension with temperature on the motion of bubbles and drops. J. Fluid Mech. 27, 361 (1967)

    Article  Google Scholar 

  15. Kenning, D.B.R.: The effect of surface energy variations on the motion of bubbles and drops. Chem. Eng. Sci. 24, 1385 (1969)

    Article  Google Scholar 

  16. Levan, M.D.: Motion of a droplet with a Newtonian interface. J. Colloid Interface Sci. 83, 11 (1981)

    Article  Google Scholar 

  17. Torres, F.E., Herbolzheimer, E.: Temperature gradients and drag effects produced by convection of interfacial internal energy around bubbles. Phys. Fluids A 3, 537 (1993)

    Article  Google Scholar 

  18. Balasubramaniam, R., Subramanian, R.S.: Thermocapillary migration of a drop: an exact solution with newtonian interfacial rheology and stretching/shrinkage of interfacial area elements for small Marangoni numbers. Ann. N. Y. Acad. Sci. 1027, 303 (2004)

    Article  Google Scholar 

  19. Khattari, Z., Steffen, P., Fischer, T.M.: Migration of a droplet in a liquid: effect of insoluble surfactants and thermal gradient. J. Phys. Condens. Matter 14, 4823 (2002)

    Article  Google Scholar 

  20. Manor, O., Lavrenteva, O., Nir, A.: Effect of non-homogeneous surface viscosity on the Marangoni migration of a droplet in viscous fluid. J. Colloid Interface Sci. 321, 142 (2008)

    Article  Google Scholar 

  21. Delale, C.F., Tryggvason, G., Nas, S.: Cylindrical bubble dynamics: exact and direct numerical simulation results. Phys. Fluids 20, 040903 (2008)

    Article  Google Scholar 

  22. Ilinski, Y.A., Zabolotskaya, E.A., Hay, T.A., Hamilton, M.F.: Models of cylindrical bubble pulsation. J. Acoust. Soc. Am. 132, 1346 (2012)

    Article  Google Scholar 

  23. Wang, C., Rallabandi, B., Hilgenfeldt, S.: Frequency dependence and frequency control of microbubble streaming flows. Phys. Fluids 25, 022002 (2013)

    Article  Google Scholar 

  24. Doinikov, A.A., Combriat, T., Thubault, P., Marmottant, P.: Acoustic streaming produced by a cylindrical bubble undergoing volume and translational oscillations in a microfluidic channel. Phys. Rev. E 94, 033109 (2016)

    Article  Google Scholar 

  25. Zhang, J., Miksis, M.J., Bankoff, S.G.: Nonlinear dynamics of a two-dimensional viscous drop under shear flow. Phys. Fluids 18, 072106 (2006)

    Article  Google Scholar 

  26. Mahlmann, S., Papageorgiou, D.T.: Buoyancy-driven motion of a two-dimensional bubble or drop through a viscous liquid in the presence of a vertical electric field. Theor. Comput. Fluid Dyn. 23, 375 (2009)

    Article  Google Scholar 

  27. Zubarev, N.M., Zubareva, O.V.: Exact solutions for the shape of a 2D conducing drop moving through a dielectric medium at an angle to the external electric field. Tech. Phys. 61, 140 (2016)

    Google Scholar 

  28. Bassano, E.: Numerical simulation of thermo-solutal-capillary migration of a dissolving drop in a cavity. Int. J. Numer. Mech. Fluids 41, 765 (2003)

    Article  Google Scholar 

  29. Wu, Z.-B., Hu, W.R.: Thermocapillary migration of a planar droplet at moderate and large Marangoni numbers. Acta Mech. 223, 609 (2012)

    Article  MathSciNet  Google Scholar 

  30. Smith, M.K.: Thermocapillary migration of a two-dimensional liquid droplet on a solid surface. J. Fluid Mech. 294, 209 (1995)

    Article  Google Scholar 

  31. Savva, N., Kalliadasis, S.: Influence of gravity on the spreading of two-dimensional droplets over topographical substrates. J. Eng. Math. 73, 3 (2012)

    Article  MathSciNet  Google Scholar 

  32. Savva, N., Kalliadasis, S.: Low-frequency vibrations of two-dimensional droplets on heterogeneous substrates. J. Fluid Mech. 754, 515 (2014)

    Article  MathSciNet  Google Scholar 

  33. Sui, Y.: Moving towards the cold region or the hot region? Thermocapillary migration of a droplet attached on a horizontal substrate. Phys. Fluids 26, 092102 (2014)

    Article  Google Scholar 

  34. Jasnow, D., Vinals, J.: Coarse-grained description of thermocapillary flow. Phys. Fluids 8, 660 (1996)

    Article  Google Scholar 

  35. Sun, R., Hu, W.R.: Planar thermocapillary migration of two bubbles in microgravity environment. Phys. Fluids 15, 3015 (2003)

    Article  Google Scholar 

  36. Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics. Prentice-Hall, Englewood Cliffs (1965)

    MATH  Google Scholar 

  37. Wu, Z.-B.: Terminal states of thermocapillary migration of a planar droplet at moderate and large Marangoni numbers. Int. J. Heat Mass Trans. 105, 704 (2017)

    Article  Google Scholar 

  38. Slattery, J.C.: Momentum, Energy and Mass Transfer in Continua. McGraw-Hill Book Company, New York (1972)

    Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China through the Grants Nos. 11172310 and 11472284 and the CAS Strategic Priority Research Program XDB22040403. The author thanks the National Supercomputing Center in Tianjin for assisting in the computation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuo-Bing Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Steady momentum and energy equations derived from the laboratory coordinate system

Appendix: Steady momentum and energy equations derived from the laboratory coordinate system

Using the coordinate and variable transformations from the laboratory coordinate system (\(\bar{x},\bar{y}\)) to a coordinate system (xy) moving with the droplet velocity \(V_{\infty }\), respectively, described below

$$\begin{aligned} {\bar{\mathbf{r}}} = \mathbf{r} + V_{\infty } t \mathbf{j} \end{aligned}$$
(32)

and

$$\begin{aligned} \begin{array}{lll} {\bar{\mathbf{v}}}({\bar{\mathbf{r}}},t) = {\mathbf{v}}({\mathbf{r}}) + V_{\infty } \mathbf{j}, &{} \bar{p}({\bar{\mathbf{r}}},t) = p({\mathbf{r}}) + p_{\infty }, &{} {\bar{T}}({\bar{\mathbf{r}}},t )- {\bar{T}}_0 = T({\mathbf{r}}) + GV_{\infty }t,\\ {\bar{\mathbf{v'}}} ({\bar{\mathbf{r}}},t) = {\mathbf{v'}}({\mathbf{r}}) + V_{\infty } \mathbf{j}, &{} \bar{p'}({\bar{\mathbf{r}}},t) = p'({\mathbf{r}}) + P'_{0}(t), &{} \bar{T'}({\bar{\mathbf{r}}},t )- {\bar{T}}_0 = T'({\mathbf{r}}) + GV_{\infty } t, \end{array} \end{aligned}$$
(33)

we have

$$\begin{aligned} \begin{aligned} {\bar{\nabla }}|_t&= \frac{\partial }{\partial \bar{x}}|_t \mathbf{i} + \frac{\partial }{\partial \bar{y}}|_t \mathbf{j} =\frac{\partial }{\partial x}|_t \mathbf{i} + \frac{\partial }{\partial y}|_t \mathbf{j} = \nabla |_t, \\ {\bar{\Delta }}|_t&= \frac{\partial ^2}{\partial \bar{x}^2}|_t + \frac{\partial ^2}{\partial \bar{y}^2}|_t =\frac{\partial ^2}{\partial x^2}|_t + \frac{\partial ^2}{\partial y^2}|_t = \Delta |_t. \end{aligned} \end{aligned}$$
(34)

For momentum equation of the continuous phase fluid in Eq. (1), we can derive its unsteady, convection and viscous terms as follows:

$$\begin{aligned} \begin{aligned} \frac{\partial {\bar{\mathbf{v}}}}{\partial t}|_{{\bar{\mathbf{r}}}}&= \frac{\partial (\mathbf{v} + V_{\infty } \mathbf{j})}{\partial t}|_{{\bar{\mathbf{r}}}} = \frac{\partial \mathbf{v}}{\partial t}|_{{\bar{\mathbf{r}}}} =\frac{\partial \mathbf{v}}{\partial x}|_t \frac{\partial x}{\partial t}|_{{\bar{\mathbf{r}}}} +\frac{\partial \mathbf{v}}{\partial y}|_t \frac{\partial y}{\partial t}|_{{\bar{\mathbf{r}}}} +\frac{\partial \mathbf{v}}{\partial t}|_\mathbf{r} \frac{\partial t}{\partial t}|_{{\bar{\mathbf{r}}}} \\&= \frac{\partial \mathbf{v}}{\partial y}|_t (-V_{\infty }) +\frac{\partial \mathbf{v}}{\partial t}|_\mathbf{r} =- V_{\infty } \frac{\partial \mathbf{v}}{\partial y}, \\ {\bar{\mathbf{v}}} \cdot {\bar{\nabla }} {\bar{\mathbf{v}}}|_t&= (\mathbf{v} + V_{\infty } \mathbf{j}) \cdot {\bar{\nabla }} (\mathbf{v} +V_{\infty } \mathbf{j})|_t =(\mathbf{v} + V_{\infty } \mathbf{j}) \cdot {\bar{\nabla }} \mathbf v|_t \\&= \mathbf{v} \cdot \nabla \mathbf{v} + V_{\infty } \frac{\partial \mathbf{v}}{\partial y}, \\ {\bar{\nabla }} \bar{p}|_t&= {\bar{\nabla }} (p + p_\infty )|_t = {\bar{\nabla }} p|_t = \nabla p, \\ {\bar{\Delta }} {\bar{\mathbf{v}}}|_t&= {\bar{\Delta }} (\mathbf{v} +V_{\infty } \mathbf{j})|_t = {\bar{\Delta }} \mathbf{v}|_t =\Delta \mathbf{v}, \end{aligned} \end{aligned}$$
(35)

where \(\frac{\partial x}{\partial t}|_{{\bar{\mathbf{r}}}}=\frac{\partial x}{\partial t}|_{\bar{x}}=0\), \(\frac{\partial y}{\partial t}|_{{\bar{\mathbf{r}}}} =\frac{\partial y}{\partial t}|_{\bar{y}}=-V_{\infty }\) and \(\frac{\partial \mathbf{v}}{\partial t}|_\mathbf{r}=0\). Then, substituting Eq. (35) into the first equation in Eq. (1), we obtain the steady momentum equation of the continuous phase fluid

$$\begin{aligned} \rho \mathbf{v} \cdot \nabla \mathbf{v}= -\nabla p +\mu \Delta \mathbf{v}. \end{aligned}$$
(36)

And for energy equation of the continuous phase fluid in Eq. (1), we can write its unsteady, convection and conductivity terms as follows:

$$\begin{aligned} \begin{aligned} \frac{\partial \bar{T}}{\partial t}|_{{\bar{\mathbf{r}}}}&= \frac{\partial T}{\partial t}|_{{\bar{\mathbf{r}}}} + G V_{\infty } =\frac{\partial T}{\partial x}|_t \frac{\partial x}{\partial t}|_{{\bar{\mathbf{r}}}} +\frac{\partial T}{\partial y}|_t \frac{\partial y}{\partial t}|_{{\bar{\mathbf{r}}}} +\frac{\partial T}{\partial t}|_\mathbf{r} \frac{\partial t}{\partial t}|_{{\bar{\mathbf{r}}}} + G V_{\infty } \\&= \frac{\partial T}{\partial y}|_t (-V_{\infty }) +\frac{\partial T}{\partial t}|_\mathbf{r} + G V_{\infty } =- V_{\infty } \frac{\partial T}{\partial y} + G V_{\infty }, \\ {\bar{\mathbf{v}}} \cdot {\bar{\nabla }} \bar{T}|_t&= (\mathbf{v} + V_{\infty } \mathbf{j}) \cdot {\bar{\nabla }} (T +GV_{\infty } t)|_t =(\mathbf{v} + V_{\infty } \mathbf{j}) \cdot {\bar{\nabla }} T|_t \\&= \mathbf{v} \cdot \nabla T + V_{\infty } \frac{\partial T}{\partial y}, \\ {\bar{\Delta }} \bar{T}|_t&= {\bar{\Delta }} (T +GV_{\infty } t)|_t = {\bar{\Delta }} T|_t =\Delta T, \end{aligned} \end{aligned}$$
(37)

where \(\frac{\partial T}{\partial t}|_\mathbf{r}=0\). Then, substituting Eq. (37) into the third equation in Eq. (1), we obtain the steady energy equation of the continuous phase fluid

$$\begin{aligned} G V_{\infty } + \mathbf{v} \nabla T= \kappa \Delta T. \end{aligned}$$
(38)

Similarly, we can also transform the momentum and energy equations within the droplet as above.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, ZB. Thermocapillary migration of a planar droplet at small and large Marangoni numbers: effects of interfacial rheology. Z. Angew. Math. Phys. 71, 8 (2020). https://doi.org/10.1007/s00033-019-1231-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1231-y

Keywords

Mathematics Subject Classification

Navigation