Skip to main content
Log in

Multiplicity of semiclassical states for Schrödinger–Poisson systems with critical frequency

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We are concerned with the Schrödinger–Poisson system

$$\begin{aligned} \left\{ \begin{array}{lll} -\,\epsilon ^2\Delta u+V(x)u+K(x)\phi u=u^5,&{}\quad x\in {\mathbb {R}}^3,\\ -\,\Delta \phi =K(x)u^2, &{}\quad x\in {\mathbb {R}}^3, \end{array}\right. \end{aligned}$$

where \(\epsilon >0\) is a parameter, \(V\in L^{\frac{3}{2}}({\mathbb {R}}^3)\) and \(K\in L^{2}({\mathbb {R}}^3)\) are nonnegative functions and V is assumed to be zero in some region of \({\mathbb {R}}^3\), which means it is of the critical frequency case. By virtue of a global compactness lemma and Lusternik–Schnirelman theory, we show the multiplicity of high energy semiclassical states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, Claudianor O., Souto, Marco A.S., Soares, Sérgio H.M.: Schrödinger–Poisson equations without Ambrosetti–Rabinowitz condition. J. Math. Anal. Appl. 377, 584–592 (2011)

    Article  MathSciNet  Google Scholar 

  2. Ambrosetti, A.: On Schrödinger–Poisson systems. Milan J. Math. 76, 257–274 (2008)

    Article  MathSciNet  Google Scholar 

  3. Ambrosetti, A., Ruiz, D.: Multiple bound states for the Schrödinger–Poisson problem. Commun. Contemp. Math. 10, 391–404 (2008)

    Article  MathSciNet  Google Scholar 

  4. Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Schrödinger–Maxwell equations. J. Math. Anal. Appl. 345, 90–108 (2008)

    Article  MathSciNet  Google Scholar 

  5. Benci, V., Cerami, G.: Existence of positive solutions of the equation \(-\Delta u+a(x)u=u^{\frac{N+2}{N-2}}\) in \({\mathbb{R}}^N\). J. Funct. Anal. 88, 90–117 (1990)

    Article  MathSciNet  Google Scholar 

  6. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger–Maxwell equations. Top. Methods Nonlinear Anal. 11, 283–293 (1998)

    Article  Google Scholar 

  7. Cerami, G., Molle, R.: Positive bound state solutions for some Schrödinger–Poisson systems. Nonlinearity 29, 3103–3119 (2016)

    Article  MathSciNet  Google Scholar 

  8. Cerami, G., Vaira, G.: Positive solutions for some nonautonomous Schrödinger–Poisson systems. J. Differ. Equ. 248, 521–543 (2010)

    Article  Google Scholar 

  9. Chabrowski, J., Yang, J.F.: Multiple semiclassical solutions of the Schrödinger equation involving a critical Sobolev exponent. Portugal. Math. 57, 273–284 (2000)

    MathSciNet  MATH  Google Scholar 

  10. D’Aprile, T., Mugnai, D.: Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations. Proc. Roy. Soc. Edinb. Sect. 134, 893–906 (2004)

    Article  Google Scholar 

  11. D’Aprile, T., Wei, J.: On bound states concentrating on spheres for the Maxwell–Schrödinger equation. SIAM J. Math. Anal. 37, 321–342 (2005)

    Article  MathSciNet  Google Scholar 

  12. D’Avenia, P.: Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations. Adv. Nonlinear Stud. 2, 177–192 (2002)

    Article  MathSciNet  Google Scholar 

  13. Furtado, M.F., Maia, L.A., Medeiros, E.S.: A note on the existence of a positive solution for a non-autonomous Schrödinger–Poisson system, analysis and topology in nonlinear differential equations. Progr. Nonlinear Differ. Equ. Appl. 85, 277–286 (2014)

    MATH  Google Scholar 

  14. He, X.M.: Multiplicity and concentration of positive solutions for the Schrödinger–Poisson equations. Z Angew. Math. Phys. 5, 869–889 (2011)

    Article  Google Scholar 

  15. He, X.M., Zou, Z.W.: Existence and concentration of ground states for Schrödinger–Poisson equations with critical growth. J. Math. Phys. 53, 023702 (2012)

    Article  MathSciNet  Google Scholar 

  16. He, Y., Lu, L., Shuai, W.: Concentrating ground-state solutions for a class of Schrödinger–Poisson equations in \({\mathbb{R}}^3\) involving critical Sobolev exponents. Commun. Pure Appl. Anal. 15, 103–125 (2016)

    Article  MathSciNet  Google Scholar 

  17. Ianni, I., Vaira, G.: On concentration of positive bound states for the Schrödinger–Poisson problem with potentials. Adv. Nonlinear Stud. 8, 573–595 (2008)

    Article  MathSciNet  Google Scholar 

  18. Li, F.Y., Li, Y.H., Shi, J.P.: Existence of positive solutions to Schrödinger–Poisson type systems with critical exponent. Commun. Contemp. Math. 16, 1450036 (2014)

    Article  MathSciNet  Google Scholar 

  19. Li, G.B., Peng, S.J., Yan, S.: Infinitely many positive solutions for the nonlinear Schrödinger–Poisson system. Commun. Contemp. Math. 12, 1069–1092 (2010)

    Article  MathSciNet  Google Scholar 

  20. Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

    Article  MathSciNet  Google Scholar 

  21. Ruiz, D., Vaira, G.: Cluster solutions for the Schrödinger–Poisson–Slater problem around a local minimum of the potential. Rev. Mat. Iberoam. 1, 253–271 (2011)

    Article  Google Scholar 

  22. Struwe, M.: A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. 187, 511–517 (1984)

    Article  MathSciNet  Google Scholar 

  23. Wang, J., Tian, L.X., Xu, J.X., Zhang, F.B.: Existence and concentration of positive solutions for semilinear Schrödinger–Poisson systems in \({\mathbb{R}}^3\). Calc. Var. Partial Differ. Equ. 48, 243–273 (2013)

    Article  Google Scholar 

  24. Willem, M.: Minimax Theorems, Progr. Nonlinear Differential Equations Appl, vol. 24. Birkhäuser, Basel (1996)

    Google Scholar 

  25. Zhang, H., Xu, J.X., Zhang, F.B.: Positive ground states for asymptotically periodic Schrödinger–Poisson systems. Math. Meth. Appl. Sci. 36, 427–439 (2013)

    Article  Google Scholar 

  26. Zhang, X., Ma, S.W., Xie, Q.L.: Bound state solutions of Schrödinger–Poisson system with critical exponent. Discrete Contin. Dyn. Syst. 37, 605–625 (2017)

    Article  MathSciNet  Google Scholar 

  27. Zhang, X., Xia, J.K.: Semi-classical solutions for Schrödinger–Poisson equations with a critical frequency. J. Differ. Equ. 265, 2121–2170 (2018)

    Article  Google Scholar 

  28. Zhao, L.G., Liu, H.D., Zhao, F.K.: Existence and concentration of solutions for the Schrödinger–Poisson equations with steep well potential. J. Differ. Equ. 255, 1–23 (2013)

    Article  Google Scholar 

  29. Zhao, L.G., Zhao, F.K.: On the existence of solutions for the Schrödinger–Poisson equations. J. Math. Anal. Appl. 346, 155–169 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the referees for careful reading of the manuscript and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by the National Natural Science Foundation of China (Nos. 11601204,11671077 and 11571140), and Qing Lan Project.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Xu, J. & Zhang, F. Multiplicity of semiclassical states for Schrödinger–Poisson systems with critical frequency. Z. Angew. Math. Phys. 71, 5 (2020). https://doi.org/10.1007/s00033-019-1226-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1226-8

Keywords

Mathematics Subject Classification

Navigation