Skip to main content
Log in

Vector bright solitons and their interactions of the couple Fokas–Lenells system in a birefringent optical fiber

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In the fiber communication domain, people are facing the challenges due to the rapidly growing requirement on the capacity from new functions and services. Multi-hump solitons are therefore noticed and studied on the feasibility of improving the capacity of the optical fiber communication. In this paper, we study the vector bright solitons and their interaction properties of the coupled Fokas–Lenells system, which models the femtosecond optical pulses in a birefringent optical fiber. We derive the so-called degenerate and nondegenerate vector solitons associated with the one and two eigenvalues, respectively, and the latter admits the symmetric profile. Asymptotically and graphically, interaction patterns of such solitons are classified as follows: Interactions between the degenerate solitons can be elastic or inelastic, reflecting the intensity redistribution between the two components; Interactions between the degenerate and nondegenerate solitons are inelastic, which make the nondegenerate solitons maintaining or losing the profiles in the different situations; Interactions between the nondegenerate solitons do not cause the intensity redistribution, while their shapes change slightly or remain unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Definition of the amplitudes are similar to those in Manakov system [46].

References

  1. Agrawal, G.P.: Fiber-Optic Communication Systems. Wiley, Hoboken (2010)

    Google Scholar 

  2. Cvijetic, M., Djordjevic, I.B.: Advanced Optical Communication Systems and Networks. Artech House, Norwood (2013)

    Google Scholar 

  3. Winzer, P.J.: Spatial multiplexing in fiber optics: the 10x scaling of metro/core capacities. Bell Labs Tech. J. 19, 22 (2014)

    Google Scholar 

  4. Winzer, P.J.: Scaling optical fiber networks: challenges and solutions. Opt. Photonics News 26, 28 (2015)

    Google Scholar 

  5. Thipparapu, N.K., Wang, Y., Umnikov, A.A., Barua, P., Richardson, D.J., Sahu, J.K.: High gain Bi-doped all fiber amplifier for O-band DWDM optical fiber communication. In: Proceedings of the Optical Fiber Communication Conference (OFC), San Diego, CA, M1J.5 (2019)

  6. Turitsyn, S.K., Prilepsky, J.E., Le, S.T., Wahls, S., Frumin, L.L., Kamalian, M., Derevyanko, S.A.: Nonlinear Fourier transform for optical data processing and transmission: advances and perspectives. Optica 4, 307 (2017)

    Google Scholar 

  7. Lan, Z.Z., Su, J.J.: Solitary and rogue waves with controllable backgrounds for the non-autonomous generalized AB system. Nonlinear Dyn. 96, 2535 (2019)

    Google Scholar 

  8. Lan, Z.Z., Hu, W.Q., Guo, B.L.: General propagation lattice Boltzmann model for a variable-coefficient compound KdV-Burgers equation. Appl. Math. Model. 73, 695 (2019)

    MathSciNet  Google Scholar 

  9. Lan, Z.Z.: Periodic, breather and rogue wave solutions for a generalized (3+ 1)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation in fluid dynamics. Appl. Math. Lett. 94, 126 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, New York (1995)

    MATH  Google Scholar 

  11. Hasegawa, A.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers I. Anomalous dispersion. Appl. Phys. Lett. 23, 142 (1973)

    Google Scholar 

  12. Akhmediev, N., Ankiewicz, A.: Multi-soliton complexes. Chaos 10, 600 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Gao, X.Y., Guo, Y.J., Shan, W.R.: Water-wave symbolic computation for the Earth, Enceladus and Titan: higher-order Boussinesq-Burgers system, auto- and non-auto-Backlund transformations. Appl. Math. Lett. (2019). https://doi.org/10.1016/j.aml.2019.106170

    Article  Google Scholar 

  14. Gao, X.Y.: Mathematical view with observational/experimental consideration on certain (\(2+1\))-dimensional waves in the cosmic/laboratory dusty plasmas. Appl. Math. Lett. 91, 165–172 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Su, J.J., Gao, Y.T., Ding, C.C.: Darboux transformations and rogue wave solutions of a generalized AB system for the geophysical flows. Appl. Math. Lett. 88, 201 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Su, J.J., Gao, Y.T.: Solitons for a (\(2+1\))-dimensional coupled nonlinear Schrodinger system with time-dependent coefficients in an optical fiber. Wave. Random Complex 28, 708 (2018)

    MathSciNet  Google Scholar 

  17. Jia, T.T., Gao, Y.T., Feng, Y.J., Hu, L., Su, J.J., Li, L.Q., Ding, C.C.: On the quintic time-dependent coefficient derivative nonlinear Schrodinger equation in hydrodynamics or fiber optics. Nonlinear Dyn. 96, 229 (2019)

    Google Scholar 

  18. Jia, T.T., Gao, Y.T., Deng, G.F., Hu, L.: Quintic time-dependent-coefficient derivative nonlinear Schrodinger equation in hydrodynamics or fiber optics: bilinear forms and dark/anti-dark/gray solitons. Nonlinear Dyn. 98, 269 (2019)

    MATH  Google Scholar 

  19. Ding, C.C., Gao, Y.T., Hu, L., Jia, T.T.: Soliton and breather interactions for a coupled system. Eur. Phys. J. Plus 133, 406 (2018)

    Google Scholar 

  20. Ding, C.C., Gao, Y.T., Li, L.Q.: Breathers and rogue waves on the periodic background for the Gerdjikov-Ivanov equation for the Alfvén waves in an astrophysical plasma. Chaos, Solitons Fract. 120, 259 (2019)

    MathSciNet  Google Scholar 

  21. Deng, G.F., Gao, Y.T., Gao, X.Y.: Backlund transformation, infinitely-many conservation laws, solitary and periodic waves of an extended (\(3+1\))-dimensional Jimbo-Miwa equation with time-dependent coefficients. Wave. Random Complex 28, 468 (2018)

    Google Scholar 

  22. Deng, G.F., Gao, Y.T., Su, J.J., Ding, C.C.: Multi-breather wave solutions for a generalized (\(3+1\))-dimensional Yu-Toda-Sasa-Fukuyama equation in a two-layer liquid. Appl. Math. Lett. 98, 177 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Feng, Y.J., Gao, Y.T., Yu, X.: Soliton dynamics for a nonintegrable model of light-colloid interactive fluids. Nonlinear Dyn. 91, 29 (2018)

    Google Scholar 

  24. Feng, Y.J., Gao, Y.T., Li, L.Q., Jia, T.T.: Bilinear form and solutions of a (\(3+1\))-dimensional generalized nonlinear evolution equation for the shallow-water waves. Appl. Anal. (2019). https://doi.org/10.1080/00036811.2019.1652734

    Article  Google Scholar 

  25. Xie, X.Y., Yang, S.K., Ai, C.H., Kong, L.C.: Integrable turbulence for a coupled nonlinear Schrödinger system. Phys. Lett. A. https://doi.org/10.1016/j.physleta.2019.126119

    Google Scholar 

  26. Xie, X.Y., Meng, G.Q.: Dark solitons for a variable-coefficient AB system in the geophysical fluids or nonlinear optics. Eur. Phys. J. Plus 134, 359 (2019)

    Google Scholar 

  27. Christodoulides, D.N., Joseph, R.I.: Vector solitons in birefringent nonlinear dispersive media. Opt. Lett. 13, 53 (1988)

    Google Scholar 

  28. Mitchell, M., Chen, Z., Shih, M.F., Segev, M.: Self-trapping of partially spatially incoherent light. Phys. Rev. Lett. 77, 490 (1996)

    Google Scholar 

  29. Mitchell, M., Segev, M.: Self-trapping of incoherent white light. Nature 387, 880 (1997)

    Google Scholar 

  30. Mitchell, M., Segev, M., Christodoulides, D.N.: Observation of multihump multimode solitons. Phys. Rev. Lett. 80, 4657 (1998)

    MATH  Google Scholar 

  31. Tang, D.Y., Zhang, H., Zhao, L.M., Wu, X.: Observation of high-order polarization-locked vector solitons in a fiber laser. Phys. Rev. Lett. 101, 153904 (2008)

    Google Scholar 

  32. Zhang, H., Tang, D.Y., Zhao, L.M., Knize, R.J.: Vector dark domain wall solitons in a fiber ring laser. Opt. Express 18, 4428 (2010)

    Google Scholar 

  33. Zhang, H., Tang, D.Y., Zhao, L.M., Wu, X.: Dark pulse emission of a fiber laser. Phys. Rev. A 80, 045803 (2009)

    Google Scholar 

  34. Ostrovskaya, E.A., Kivshar, Y.S., Skryabin, D.V., Firth, W.J.: Stability of multihump optical solitons. Phys. Rev. Lett. 83, 296 (1999)

    MATH  Google Scholar 

  35. Pelinovsky, E., Yang, J.: Instabilities of multihump vector solitons in coupled nonlinear Schrödinger equations. Stud. Appl. Math. 115, 109 (2005)

    MathSciNet  MATH  Google Scholar 

  36. Kanna, T., Vijayajayanthl, M., Lakshmanan, M.: Coherently coupled bright optical solitons and their collisions. J. Phys. A 43, 434018 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Liu, L., Tian, B., Chai, H.P., Yuan, Y.Q.: Certain bright soliton interactions of the Sasa-Satsuma equation in a monomode optical fiber. Phys. Rev. E 95, 032202 (2017)

    Google Scholar 

  38. Akhmediev, N.N., Buryak, A.V., Soto-Crespo, J.M., Andersen, D.R.: Phase-locked stationary soliton states in birefringent nonlinear optical fibers. J. Opt. Soc. Am. B 12, 434 (1995)

    Google Scholar 

  39. Stratmann, M., Pagel, T., Mitschke, F.: Experimental observation of temporal soliton molecules. Phys. Rev. Lett. 95, 143902 (2005)

    Google Scholar 

  40. Herink, G., Kurtz, F., Jalali, B., Solli, D.R., Ropers, C.: Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science 356, 50 (2017)

    Google Scholar 

  41. Manakov, S.V.: On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Sov. Phys. JETP 38, 248 (1974)

    Google Scholar 

  42. Radhakrishnan, R., Lakshmanan, M., Hietarinta, J.: Inelastic collision and switching of coupled bright solitons in optical fibers. Phys. Rev. E 56, 2213 (1997)

    Google Scholar 

  43. Anastassiou, C., Segev, M., Steiglitz, K., Giordmaine, J.A., Mitchell, M., Shih, M.F., Lan, S., Martin, J.: Energy-exchange interactions between colliding vector solitons. Phys. Rev. Lett. 83, 2332 (1999)

    Google Scholar 

  44. Kang, J.U., Stegeman, G.I., Aitchison, J.S., Akhmediev, N.: Observation of Manakov spatial solitons in AlGaAs planar waveguides. Phys. Rev. Lett. 76, 3699 (1996)

    Google Scholar 

  45. Rand, D., Glesk, I., Bres, C.S., Nolan, D.A., Chen, X., Koh, J., Fleischer, J.W., Steiglitz, K., Prucnal, P.R.: Observation of temporal vector soliton propagation and collision in birefringent fiber. Phys. Rev. Lett. 98, 053902 (2007)

    Google Scholar 

  46. Stalin, S., Ramakrishnan, R., Senthilvelan, M., Lakshmanan, M.: Nondegenerate solitons in Manakov system. Phys. Rev. Lett. 122, 043901 (2019)

    Google Scholar 

  47. Lenells, J.: Exactly solvable model for nonlinear pulse propagation in optical fibers. Stud. Appl. Math 123, 215 (2009)

    MathSciNet  MATH  Google Scholar 

  48. Fokas, A.S.: On a class of physically important integrable equations. Phys. D 87, 145 (1995)

    MathSciNet  MATH  Google Scholar 

  49. Guo, B.L., Ling, L.L.: Riemann-Hilbert approach and N-soliton formula for coupled derivative Schrödinger equation. J. Math. Phys 53, 073506 (2012)

    MathSciNet  MATH  Google Scholar 

  50. Chen, S.H., Ye, Y.L., Soto-Crespo, J.M., Grelu, P., Baronio, F.: Peregrine solitons beyond the threefold limit and their two-soliton interactions. Phys. Rev. Lett. 121, 104101 (2018)

    Google Scholar 

  51. Ling, L.M., Feng, B.F., Zhu, Z.N.: General soliton solutions to a coupled Fokas-Lenells equation. Nonlinear Anal. Real World Appl. 40, 185 (2018)

    MathSciNet  MATH  Google Scholar 

  52. Kanna, T., Lakshmanan, M.: Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödinger equations. Phys. Rev. Lett. 86, 5043 (2001)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China under Grant Nos. 11772017, 11272023 and 11805020, by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05), and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Furthermore, \(u_{\alpha }[N]\) can be rewritten as

$$\begin{aligned} u_{\alpha }[N]=2\sigma \frac{\text {det} \left( C_{\alpha , N}'\right) }{\text {det}\left( B_{N}'\right) } \mathrm{e}^{i\frac{\tau }{\epsilon }}=2\sigma \frac{\text {det} \left( \begin{array}{cc} B'_{N} &{}\quad Y_{2}'^{[\alpha ]\dag } \\ Y_{1}' &{}\quad 0 \\ \end{array} \right) }{\text {det}\left( B_{N}'\right) }\mathrm{e}^{i\frac{\tau }{\epsilon }}, \end{aligned}$$

where

$$\begin{aligned}&B'_{N}=\left[ \frac{2}{\lambda _{j}^{*2}-\lambda _{k}^{2}}\left( \lambda _{j}^{*}\mathrm{e}^{2\theta _{j}^{*}+2\theta _{k}} -\sigma \lambda _{k}\gamma _{j,k}\right) \right] _{N\times N}, \\&Y_{1}'=(\mathrm{e}^{2\theta _{1}},\mathrm{e}^{2\theta _{2}},\ldots ,\mathrm{e}^{2\theta _{N}}), \quad Y_{2}'=\left( \begin{array}{c} l_{1},l_{2},\ldots , l_{N} \\ m_{1},m_{2},\ldots ,m_{N} \\ \end{array} \right) . \end{aligned}$$

Supposing that \(v_{1}<v_{2}<\cdots <v_{N}\) and \(\theta _{1R},\theta _{2R},\ldots ,\theta _{k-1,R}\rightarrow -\infty ; \theta _{k+1,R},\theta _{k+2,R},\ldots ,\theta _{N,R}\rightarrow +\infty \) along the track \(\tau -v_{k}\xi =\)const as \(\xi \rightarrow -\infty \). It follows that

$$\begin{aligned}&\text {det}\left( B'_{N}\right) \rightarrow \mathrm{e}^{4 (\theta _{k+1}+\theta _{k+2}+\cdots +\theta _{N})_{R} }\left[ \text {det}( {\widetilde{B}}_{k}^{-})\right] ,\\&\text {det}\left( C_{\alpha , N}'\right) \rightarrow \mathrm{e}^{4(\theta _{k+1}+\theta _{k+2}+\cdots +\theta _{N})_{R}} \left[ \text {det}( {\widetilde{C}}_{\alpha ,k}^{-})\right] ,\\&u_{\alpha }[N]\rightarrow 2\sigma \frac{\text {det}({\widetilde{C}}_{\alpha ,k}^{-})}{\text {det}({\widetilde{B}}_{k}^{-})}\mathrm{e}^{i\frac{\tau }{\epsilon }}, \end{aligned}$$

where

$$\begin{aligned}&{\widetilde{B}}_{k}^{-}=\left[ \begin{array}{ccccccc} -\frac{2\sigma \lambda _{1}\gamma _{1,1}}{\lambda _{1}^{*2}-\lambda _{1}^{2}} &{}\quad \cdots &{}\quad -\frac{2\sigma \lambda _{k-1}\gamma _{1,k-1}}{\lambda _{1}^{*2}-\lambda _{k-1}^{2}} &{}\quad -\frac{2\sigma \lambda _{k}\gamma _{1,k}}{\lambda _{1}^{*2}-\lambda _{k}^{2}} &{}\quad 0 &{}\quad \cdots &{}\quad 0 \\ \vdots &{}\quad \ddots &{}\quad \vdots &{}\quad \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ -\frac{2\sigma \lambda _{1}\gamma _{k-1,1}}{\lambda _{k-1}^{*2}-\lambda _{1}^{2}} &{}\quad \cdots &{}\quad -\frac{2\sigma \lambda _{k-1}\gamma _{k-1,k-1}}{\lambda _{k-1}^{*2}-\lambda _{k-1}^{2}} &{}\quad -\frac{2\sigma \lambda _{k}\gamma _{k-1,k}}{\lambda _{k-1}^{*2}-\lambda _{k}^{2}} &{}\quad 0 &{}\quad \cdots &{}\quad 0 \\ -\frac{2\sigma \lambda _{1}\gamma _{k,1}}{\lambda _{k}^{*2}-\lambda _{1}^{2}} &{}\quad \cdots &{}\quad -\frac{2\sigma \lambda _{k-1}\gamma _{k,k-1}}{\lambda _{k}^{*2}-\lambda _{k-1}^{2}} &{}\quad \frac{2\left( \lambda _{k}^{*}\mathrm{e}^{2\theta _{k}^{*}+2\theta _{k}} -\sigma \lambda _{k}\gamma _{k,k}\right) }{\lambda _{k}^{*2}-\lambda _{k}^{2}} &{}\quad \frac{2\lambda _{k}^{*}\mathrm{e}^{2\theta _{k}^{*}}}{\lambda _{k}^{*2}-\lambda _{k+1}^{2}} &{}\quad \cdots &{}\quad \frac{2\lambda _{k}^{*}\mathrm{e}^{2\theta _{k}^{*}}}{\lambda _{k}^{*2}-\lambda _{N}^{2}} \\ 0 &{}\quad \cdots &{}\quad 0 &{}\quad \frac{2\lambda _{k+1}^{*}\mathrm{e}^{2\theta _{k}}}{\lambda _{k+1}^{*2}-\lambda _{k}^{2}} &{}\quad \frac{2\lambda _{k+1}^{*}}{\lambda _{k+1}^{*2}-\lambda _{k+1}^{2}} &{}\quad \cdots &{}\quad \frac{2\lambda _{k+1}^{*}}{\lambda _{k+1}^{*2}-\lambda _{N}^{2}} \\ \vdots &{}\quad \ddots &{}\quad \vdots &{}\quad \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ 0 &{}\quad \cdots &{}\quad 0 &{}\quad \frac{2\lambda _{N}^{*}\mathrm{e}^{2\theta _{k}}}{\lambda _{N}^{*2}-\lambda _{k}^{2}} &{}\quad \frac{2\lambda _{N}^{*}}{\lambda _{N}^{*2}-\lambda _{k+1}^{2}} &{}\quad \cdots &{}\quad \frac{2\lambda _{N}^{*}}{\lambda _{N}^{*2}-\lambda _{N}^{2}} \\ \end{array} \right] , \\&{\widetilde{C}}_{\alpha ,k}^{-}=\left( \begin{array}{cc} {\widetilde{B}}_{k}^{-} &{}\quad {\widetilde{Y}}_{2,k}^{-[\alpha ]\dag } \\ {\widetilde{Y}}_{1,k}^{-} &{}\quad 0 \\ \end{array} \right) ,\ {\widetilde{Y}}_{1,k}^{-}=(0,\ldots ,0,\mathrm{e}^{2\theta _{k}},1,\ldots ,1),\ {\widetilde{Y}}_{2,k}^{-}=\left( \begin{array}{c} l_{1},\ldots ,l_{k},0,\ldots ,0 \\ m_{1},\ldots ,m_{k},0,\ldots ,0 \\ \end{array} \right) . \end{aligned}$$

By the same thoughts above, we can derive the asymptotical behavior as \(\xi \rightarrow +\infty \) along the trajectory \(\tau -v_{k}\xi =\text {const}\) with \(\theta _{1R},\theta _{2R},\ldots ,\theta _{k-1,R}\rightarrow +\infty ; \theta _{k+1,R},\theta _{k+2,R},\ldots ,\theta _{N,R}\rightarrow -\infty \). It follows that

$$\begin{aligned}&\text {det}\left( B'_{N}\right) \rightarrow \mathrm{e}^{4 (\theta _{1}+\theta _{2}+\cdots +\theta _{k-1})_{R} }\left[ \text {det}( {\widetilde{B}}_{k}^{+})\right] ,\\&\text {det}\left( C_{\alpha , N}'\right) \rightarrow \mathrm{e}^{4(\theta _{1}+\theta _{2}+\cdots +\theta _{k-1})_{R}} \left[ \text {det}( {\widetilde{C}}_{\alpha ,k}^{+})\right] ,\\&u_{\alpha }[N]\rightarrow 2\sigma \frac{\text {det}({\widetilde{C}}_{\alpha ,k}^{+})}{\text {det}{{\widetilde{B}}_{k}^{+}}}\mathrm{e}^{i\frac{\tau }{\epsilon }}, \end{aligned}$$

where

$$\begin{aligned}&{\widetilde{B}}_{k}^{+}=\left[ \begin{array}{ccccccc} \frac{2\lambda _{1}^{*}}{\lambda _{1}^{*2}-\lambda _{1}^{2}} &{}\quad \cdots &{}\quad \frac{2\lambda _{1}^{*}}{\lambda _{1}^{*2}-\lambda _{k-1}^{2}} &{}\quad \frac{2\lambda _{1}^{*}\mathrm{e}^{2\theta _{k}}}{\lambda _{1}^{*2}-\lambda _{k}^{2}} &{}\quad 0 &{}\quad \cdots &{}\quad 0 \\ \vdots &{}\quad \ddots &{}\quad \vdots &{}\quad \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ \frac{2\lambda _{k-1}^{*}}{\lambda _{k-1}^{*2}-\lambda _{1}^{2}} &{}\quad \cdots &{}\quad \frac{2\lambda _{k-1}^{*}}{\lambda _{k-1}^{*2}-\lambda _{k-1}^{2}} &{}\quad \frac{2\lambda _{k-1}^{*}\mathrm{e}^{2\theta _{k}}}{\lambda _{k-1}^{*2}-\lambda _{k}^{2}} &{}\quad 0 &{}\quad \cdots &{}\quad 0 \\ \frac{2\lambda _{k}^{*}\mathrm{e}^{2\theta _{k}^{*}}}{\lambda _{k}^{*2}-\lambda _{1}^{2}} &{}\quad \cdots &{}\quad \frac{2\lambda _{k}^{*}\mathrm{e}^{2\theta _{k}^{*}}}{\lambda _{k}^{*2}-\lambda _{k-1}^{2}} &{}\quad \frac{2\left( \lambda _{k}^{*}\mathrm{e}^{2\theta _{k}^{*}+2\theta _{k}} -\sigma \lambda _{k}\gamma _{k,k}\right) }{\lambda _{k}^{*2}-\lambda _{k}^{2}} &{}\quad -\frac{2\sigma \lambda _{k+1}\gamma _{k,k+1}}{\lambda _{k}^{*2}-\lambda _{k+1}^{2}} &{}\quad \cdots &{}\quad -\frac{2\sigma \lambda _{N}\gamma _{k,N}}{\lambda _{k}^{*2}-\lambda _{N}^{2}} \\ 0 &{}\quad \cdots &{}\quad 0 &{}\quad -\frac{2\sigma \lambda _{k}\gamma _{k+1,k}}{\lambda _{k+1}^{*2}-\lambda _{k}^{2}} &{}\quad -\frac{2\sigma \lambda _{k+1}\gamma _{k+1,k+1}}{\lambda _{k+1}^{*2}-\lambda _{k+1}^{2}} &{}\quad \cdots &{}\quad -\frac{2\sigma \lambda _{N}\gamma _{k+1,N}}{\lambda _{k+1}^{*2}-\lambda _{N}^{2}} \\ \vdots &{}\quad \ddots &{}\quad \vdots &{}\quad \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ 0 &{}\quad \cdots &{}\quad 0 &{}\quad -\frac{2\sigma \lambda _{k}\gamma _{N,k}}{\lambda _{N}^{*2}-\lambda _{k}^{2}} &{}\quad -\frac{2\sigma \lambda _{k+1}\gamma _{N,k+1}}{\lambda _{N}^{*2}-\lambda _{k+1}^{2}} &{}\quad \cdots &{}\quad -\frac{2\sigma \lambda _{N}\gamma _{N,N}}{\lambda _{N}^{*2}-\lambda _{N}^{2}} \\ \end{array} \right] , \\&{\widetilde{C}}_{\alpha ,k}^{+}=\left( \begin{array}{cc} {\widetilde{B}}_{k}^{+} &{}\quad {\widetilde{Y}}_{2,k}^{+[\alpha ]\dag } \\ {\widetilde{Y}}_{1,k}^{+} &{}\quad 0 \\ \end{array} \right) ,\ {\widetilde{Y}}_{1,k}^{+}=(1,\ldots ,1,\mathrm{e}^{2\theta _{k}},0,\ldots ,0),\ {\widetilde{Y}}_{2,k}^{+}=\left( \begin{array}{c} 0,\ldots ,0, l_{k},\ldots ,l_{N} \\ 0,\ldots ,0,m_{k},\ldots ,m_{N} \\ \end{array} \right) . \end{aligned}$$

Appendix B

$$\begin{aligned} a_{1}^{+}= & {} \frac{(\lambda _{1}^{2}-\lambda _{2}^{2}) (\lambda _{2}^{2}-\lambda _{2}^{*2})(\lambda _{2}^{2}-\lambda _{3}^{*2}) \left[ |m_{3}|^{2}(\lambda _{2}^{*2}-\lambda _{3}^{2})+|l_{3}|^{2} (\lambda _{2}^{*2}-\lambda _{3}^{*2})\right] }{l_{2}\lambda _{2}(\lambda _{2}^{2}-\lambda _{1}^{*2}) \left( |m_{3}|^{2}|\lambda _{2}^{*2}-\lambda _{3}^{2}|^{2}+ |l_{3}|^{2}|\lambda _{2}^{2}-\lambda _{3}^{2}|^{2}\right) },\\ \mathrm{e}^{\rho _{1}^{+}}= & {} \frac{|m_{1}|^{2}\lambda _{1}(\lambda _{2}^{2}-\lambda _{2}^{*2}) (\lambda _{2}^{2}-\lambda _{3}^{*2})\left[ |m_{3}|^{2}|\lambda _{1}^{2} -\lambda _{3}^{2}|^{2} (\lambda _{3}^{2}-\lambda _{2}^{*2})+|l_{3}|^{2}|\lambda _{1}^{2}-\lambda _{3}^{*2}|^{2} (\lambda _{3}^{*2}-\lambda _{2}^{*2})\right] }{-\sigma l_{2}\lambda _{1}^{*}\lambda _{2}|\lambda _{1}^{2}-\lambda _{3}^{*2}|^{2} \left( |m_{3}|^{2}|\lambda _{2}^{*2}-\lambda _{3}^{2}|^{2}+ |l_{3}|^{2}|\lambda _{2}^{2}-\lambda _{3}^{2}|^{2}\right) },\\ \mathrm{e}^{s_{11}}= & {} \frac{l_{3}^{*}m_{1}^{*}m_{3}\lambda _{2}^{*} (\lambda _{1}^{*2}-\lambda _{1}^{2})(\lambda _{1}^{2}-\lambda _{2}^{2}) (\lambda _{2}^{*2}-\lambda _{3}^{2}) (\lambda _{2}^{2}-\lambda _{3}^{*2})(\lambda _{3}^{2}-\lambda _{3}^{*2})}{|l_{2}|^{2}\lambda _{1}^{*}\lambda _{2} (\lambda _{1}^{2}-\lambda _{2}^{*2}) (\lambda _{1}^{*2}-\lambda _{3}^{2})\left( |m_{3}|^{2}|\lambda _{2}^{*2} -\lambda _{3}^{2}|^{2}+ |l_{3}|^{2}|\lambda _{2}^{2}-\lambda _{3}^{2}|^{2}\right) },\\ \mathrm{e}^{s_{12}}= & {} \frac{l_{3}^{*}m_{1}^{*}m_{3} (-\lambda _{1}^{*2}+\lambda _{1}^{2})(\lambda _{2}^{*2}-\lambda _{3}^{2}) (\lambda _{2}^{*2}-\lambda _{3}^{*2}) (\lambda _{3}^{2}-\lambda _{3}^{*2})}{\sigma \lambda _{1}^{*} (\lambda _{1}^{*2}-\lambda _{3}^{2})\left( |m_{3}|^{2}|\lambda _{2}^{*2} -\lambda _{3}^{2}|^{2}+ |l_{3}|^{2}|\lambda _{2}^{2}-\lambda _{3}^{2}|^{2}\right) },\\ b_{1}^{+}= & {} \frac{m_{1}^{*}(-\lambda _{1}^{*2}+\lambda _{1}^{2})\left[ |m_{3}|^{2} (\lambda _{1}^{*2}-\lambda _{3}^{*2})|\lambda _{2}^{*2}-\lambda _{3}^{2}|^{2}+ |l_{3}|^{2}(\lambda _{1}^{*2}-\lambda _{3}^{2})|\lambda _{2}^{2} -\lambda _{3}^{2}|^{2}\right] }{\sigma \lambda _{1}^{*} (\lambda _{1}^{*2}-\lambda _{3}^{2})\left( |m_{3}|^{2}|\lambda _{2}^{*2} -\lambda _{3}^{2}|^{2}+ |l_{3}|^{2}|\lambda _{2}^{2}-\lambda _{3}^{2}|^{2}\right) },\\ \mathrm{e}^{\rho _{2}^{+}}= & {} \frac{m_{1}^{*}\lambda _{2}^{*}(\lambda _{1}^{*2}-\lambda _{1}^{2}) (\lambda _{1}^{2}-\lambda _{2}^{2})|\lambda _{2}^{*2}-\lambda _{3}^{2}|^{2} \left[ |m_{3}|^{2} (\lambda _{1}^{*2}-\lambda _{3}^{*2})+ |l_{3}|^{2}(\lambda _{1}^{*2}-\lambda _{3}^{2})\right] }{\lambda _{1}^{*} (\lambda _{1}^{*2}-\lambda _{3}^{2})\left( |m_{3}|^{2}|\lambda _{2}^{*2} -\lambda _{3}^{2}|^{2}+ |l_{3}|^{2}|\lambda _{2}^{2}-\lambda _{3}^{2}|^{2}\right) },\\ \mathrm{e}^{s_{21}}= & {} -\frac{l_{3}m_{3}^{*}|m_{1}|^{2}\lambda _{1} (\lambda _{2}^{2}-\lambda _{2}^{*2})(\lambda _{1}^{*2}-\lambda _{3}^{*2}) (\lambda _{2}^{2}-\lambda _{3}^{*2}) (\lambda _{3}^{*2}-\lambda _{3}^{2})}{\sigma l_{2}\lambda _{1}^{*}\lambda _{2} (\lambda _{1}^{2}-\lambda _{3}^{*2}) \left( |m_{3}|^{2}|\lambda _{2}^{*2}-\lambda _{3}^{2}|^{2}+ |l_{3}|^{2}|\lambda _{2}^{2}-\lambda _{3}^{2}|^{2}\right) },\\ \mathrm{e}^{s_{22}}= & {} \frac{l_{3}m_{3}^{*} (\lambda _{1}^{2}-\lambda _{1}^{2})(\lambda _{2}^{2}-\lambda _{2}^{*2}) (\lambda _{2}^{2}-\lambda _{3}^{*2}) (\lambda _{3}^{*2}-\lambda _{3}^{2})}{l_{2}\lambda _{2} (\lambda _{2}^{2}-\lambda _{1}^{*2}) \left( |m_{3}|^{2}|\lambda _{2}^{*2}-\lambda _{3}^{2}|^{2}+ |l_{3}|^{2}|\lambda _{2}^{2}-\lambda _{3}^{2}|^{2}\right) },\\ \mathrm{e}^{\eta _{1}^{+}}= & {} \frac{|m_{1}|^{2}\lambda _{1} \left[ |m_{3}|^{2}|\lambda _{2}^{*2}-\lambda _{3}^{2}|^{2}|\lambda _{1}^{2} -\lambda _{3}^{2}|^{2} +|l_{3}|^{2}|\lambda _{2}^{2}-\lambda _{3}^{2}|^{2}|\lambda _{1}^{2}-\lambda _{3}^{*2}|^{2} \right] }{-\sigma \lambda _{1}^{*}|\lambda _{1}^{2}-\lambda _{3}^{*2}|^{2} \left( |m_{3}|^{2}|\lambda _{2}^{*2}-\lambda _{3}^{2}|^{2}+ |l_{3}|^{2}|\lambda _{2}^{2}-\lambda _{3}^{2}|^{2}\right) },\\ \mathrm{e}^{\eta _{2}^{+}}= & {} \frac{-\sigma (|l_{3}|^{2}+|m_{3}|^{2})\lambda _{2}^{*} |\lambda _{1}^{2}-\lambda _{2}^{2}|^{2}|\lambda _{2}^{2}-\lambda _{3}^{*2}|^{2} }{|l_{2}|^{2}\lambda _{2} |\lambda _{1}^{2}-\lambda _{2}^{*2}|^{2} \left( |m_{3}|^{2}|\lambda _{2}^{*2}-\lambda _{3}^{2}|^{2}+ |l_{3}|^{2}|\lambda _{2}^{2}-\lambda _{3}^{2}|^{2}\right) },\\ \mathrm{e}^{\eta _{11}^{+}}= & {} \frac{|m_{1}|^{2}\lambda _{1}\lambda _{2}^{*} |\lambda _{2}^{*2}-\lambda _{3}^{2}|^{2} \left[ |m_{3}|^{2}|\lambda _{1}^{2}-\lambda _{3}^{2}|^{2} +|l_{3}|^{2}|\lambda _{1}^{2}-\lambda _{3}^{*2}|^{2} \right] }{|l_{2}|^{2}\lambda _{1}^{*}\lambda _{2}|\lambda _{1}^{2}-\lambda _{3}^{*2}|^{2} \left( |m_{3}|^{2}|\lambda _{2}^{*2}-\lambda _{3}^{2}|^{2}+ |l_{3}|^{2}|\lambda _{2}^{2}-\lambda _{3}^{2}|^{2}\right) },\\ \mathrm{e}^{\eta _{12}}= & {} \frac{-l_{3}m_{1}m_{3}^{*}\lambda _{1} (\lambda _{1}^{2}-\lambda _{1}^{*2})(\lambda _{2}^{2}-\lambda _{2}^{*2}) (\lambda _{3}^{2}-\lambda _{3}^{*2})(\lambda _{2}^{2}-\lambda _{3}^{*2})}{l_{2}\lambda _{2}(\lambda _{1}^{2}-\lambda _{3}^{*2})(\lambda _{2}^{2}-\lambda _{1}^{*2}) \left( |m_{3}|^{2}|\lambda _{2}^{*2}-\lambda _{3}^{2}|^{2}+ |l_{3}|^{2}|\lambda _{2}^{2}-\lambda _{3}^{2}|^{2}\right) },\\ \mathrm{e}^{\eta _{21}}= & {} \frac{-l_{3}^{*}m_{3}m_{1}^{*}\lambda _{2}^{*} (\lambda _{1}^{2}-\lambda _{1}^{*2})(\lambda _{2}^{2}-\lambda _{2}^{*2}) (\lambda _{3}^{2}-\lambda _{3}^{*2})(\lambda _{2}^{*2}-\lambda _{3}^{2})}{l_{2}^{*}\lambda _{1}^{*}(\lambda _{1}^{2}-\lambda _{2}^{*2})(\lambda _{1}^{*2} -\lambda _{3}^{2}) \left( |m_{3}|^{2}|\lambda _{2}^{*2}-\lambda _{3}^{2}|^{2}+ |l_{3}|^{2}|\lambda _{2}^{2}-\lambda _{3}^{2}|^{2}\right) }. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, CR., Tian, B., Qu, QX. et al. Vector bright solitons and their interactions of the couple Fokas–Lenells system in a birefringent optical fiber. Z. Angew. Math. Phys. 71, 18 (2020). https://doi.org/10.1007/s00033-019-1225-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1225-9

Keywords

Mathematics Subject Classification

Navigation