Skip to main content
Log in

Application of relative entropy theory to streamwise velocity profile in open-channel flow: effect of prior probability distributions

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Applying the concept of relative or cross-entropy and the principle of minimum cross-entropy, this study derives the velocity distribution in a wide open channel. Previous studies have employed Shannon entropy and the principle of maximum entropy to derive distributions of various flow variables, including velocity. Relative entropy is a generalized form of entropy and can specialize into Shannon entropy if the prior probability distribution is taken to be a uniform distribution. The prior distribution is often formulated, based on intuition, experience, or thought experiment. When deriving the velocity distribution in wide open channels, this study assumes four prior probability distributions and analyzes the effect of these assumed priors. It is found that a normal-type and a gamma-type prior can significantly influence the velocity profile, especially near the channel bed, and their prediction accuracies are superior to the previously obtained velocity distribution based on Shannon entropy. Furthermore, closed-form explicit analytical solutions are obtained for the nonlinear differential equations that arise while incorporating these priors. Experimental and field data are used to verify the derived velocity distributions, and an error analysis is carried out to evaluate their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abbasbandy, S.: Homotopy analysis method for generalized Benjamin–Bona–Mahony equation. Z. für Angew. Math. Phys. 59(1), 51–62 (2008)

    Article  MathSciNet  Google Scholar 

  2. Abbasbandy, S., Shivanian, E., Vajravelu, K.: Mathematical properties of \(\hbar \)-curve in the frame work of the homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 16(11), 4268–4275 (2011)

    Article  MathSciNet  Google Scholar 

  3. Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method, vol. 60. Springer, Berlin (2013)

    MATH  Google Scholar 

  4. Afzalimehr, H., Rennie, C.D.: Determination of bed shear stress in gravel-bed rivers using boundary-layer parameters. Hydrol. Sci. J. 54(1), 147–159 (2009)

    Article  Google Scholar 

  5. Agnew, R.P.: Euler transformations. Am. J. Math. 66(2), 313–338 (1944)

    Article  MathSciNet  Google Scholar 

  6. Barbe, D.E., Cruise, J.F., Singh, V.P.: Solution of three-constraint entropy-based velocity distribution. J. Hydraul. Eng. 117(10), 1389–1396 (1991)

    Article  Google Scholar 

  7. Blasius, H.: Das aehnlichkeitsgesetz bei reibungsvorgängen in flüssigkeiten. In: Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, pp. 1–41. Springer, Berlin (1913)

    Google Scholar 

  8. Cheng, J., Cang, J., Liao, S.J.: On the interaction of deep water waves and exponential shear currents. Z. Angew. Math. Phys. 60(3), 450–478 (2009)

    Article  MathSciNet  Google Scholar 

  9. Chiu, C.L.: Entropy and probability concepts in hydraulics. J. Hydraul. Eng. 113(5), 583–600 (1987)

    Article  Google Scholar 

  10. Chiu, C.-L.: Velocity distribution in open channel flow. J. Hydraul. Eng. ASCE 115(5), 576–594 (1989)

    Article  Google Scholar 

  11. Chiu, C.L., Jin, W., Chen, Y.C.: Mathematical models of distribution of sediment concentration. J. Hydraul. Eng. 126(1), 16–23 (2000)

    Article  Google Scholar 

  12. Chow, V.T.: Open Channel Hydraulics. McGraw-Hill Book Company, New York (1959)

    Google Scholar 

  13. Cui, H., Singh, V.P.: Two-dimensional velocity distribution in open channels using the Tsallis entropy. J. Hydrol. Eng. 18(3), 331–339 (2013)

    Article  Google Scholar 

  14. Davoren, A.: Local scour around a cylindrical bridge pier. Publication No. 3 of the Hydrology Centre, Nat. Water and Soil Conservation Authority. Ministry of Works and Dev., Christchurch, New Zealand (1985)

  15. Einstein, H.A., Chien, N.: Effects of heavy sediment concentration near the bed on the velocity and sediment distribution. M. R. D. Sediment Series No. 8 University of California, Berkeley (1955)

  16. Hayat, T., Khan, M., Ayub, M.: On non-linear flows with slip boundary condition. Z. Angew. Math. Phys. 56(6), 1012–1029 (2005)

    Article  MathSciNet  Google Scholar 

  17. He, J.H.: Homotopy perturbation method: a new nonlinear analytical technique. Appl. Math. Comput. 135(1), 73–79 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Islam, S., Shah, A., Zhou, C.Y., Ali, I.: Homotopy perturbation analysis of slider bearing with Powell–Eyring fluid. Z. Angew. Math. Phys. 60(6), 1178 (2009)

    Article  MathSciNet  Google Scholar 

  19. Jaynes, E.T.: Information theory and statistical mechanics I. Phys. Rev. 106(4), 620–630 (1957a)

    Article  MathSciNet  Google Scholar 

  20. Jaynes, E.T.: Information theory and statistical mechanics II. Phys. Rev. 108(2), 171–190 (1957b)

    Article  MathSciNet  Google Scholar 

  21. Jaynes, E.T.: On the rationale of maximum entropy methods. Proc. IEEE 70(9), 939–952 (1982)

    Article  Google Scholar 

  22. Karmishin, A.V., Zhukov, A.I., Kolosov, V.G.: Methods of Dynamics Calculation and Testing for Thin-Walled Structures. Mashinostroyenie, Moscow (1990)

    Google Scholar 

  23. Kapur, J. N., Kesavan, H. K.: Entropy optimization principles and their applications. In: Entropy and Energy Dissipation in Water Resources, pp. 3–20. Springer, Netherlands (1992)

    Chapter  Google Scholar 

  24. Kesavan, H.K., Kapur, J.N.: On the families of solutions to generalized maximum entropy and minimum cross-entropy problems. Int. J. Gen. Syst. 16(3), 199–214 (1990)

    Article  Google Scholar 

  25. Kullback, S.: Information Theory and Statistics. Wiley, New York (1959)

    MATH  Google Scholar 

  26. Kumbhakar, M., Ghoshal, K.: Two dimensional velocity distribution in open channels using Renyi entropy. Phys. A Stat. Mech. Appl. 450, 546–559 (2016a)

    Article  MathSciNet  Google Scholar 

  27. Kumbhakar, M., Kundu, S., Ghoshal, K., Singh, V.P.: Entropy-based modeling of velocity lag in sediment-laden open channel turbulent flow. Entropy 18(9), 318 (2016b)

    Article  Google Scholar 

  28. Kumbhakar, M., Ghoshal, K., Singh, V.P.: Derivation of Rouse equation for sediment concentration using Shannon entropy. Phys. A Stat. Mech. Appl. 465, 494–499 (2017a)

    Article  MathSciNet  Google Scholar 

  29. Kumbhakar, M., Kundu, S., Ghoshal, K.: Hindered settling velocity in particle-fluid mixture: a theoretical study using the entropy concept. J. Hydraul. Eng. 143(11), 06017019 (2017b)

    Article  Google Scholar 

  30. Kumbhakar, M., Ghoshal, K.: One-dimensional velocity distribution in open channels using Renyi entropy. Stoch. Environ. Res. Risk Assess. 31(4), 949–959 (2017c)

    Article  Google Scholar 

  31. Kundu, S.: Derivation of Hunt equation for suspension distribution using Shannon entropy theory. Phys. A Stat. Mech. Appl. 488, 96–111 (2017)

    Article  MathSciNet  Google Scholar 

  32. Liao, S.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  33. Liao, S., Campo, A.: Analytic solutions of the temperature distribution in Blasius viscous flow problems. J. Fluid Mech. 453, 411–425 (2002)

    Article  MathSciNet  Google Scholar 

  34. Lyapunov, A.M.: General Problem on Stability of Motion (English translation). Taylor & Francis, London (1992)

    Google Scholar 

  35. Marini, G., De Martino, G., Fontana, N., Fiorentino, M., Singh, V.P.: Entropy approach for 2D velocity distribution in open-channel flow. J. Hydraul. Res. 49(6), 784–790 (2011)

    Article  Google Scholar 

  36. Moramarco, T., Corato, G., Melone, F., Singh, V.P.: An entropy-based method for determining the flow depth distribution in natural channels. J. Hydrol. 497, 176–188 (2013)

    Article  Google Scholar 

  37. Shannon, C.E.: A mathematical theory of communications, I and II. Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  Google Scholar 

  38. Singh, M.K., Chatterjee, A., Singh, V.P.: Solution of one-dimensional time fractional advection dispersion equation by homotopy analysis method. J. Eng. Mech. 143(9), 04017103 (2017). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001318

    Article  Google Scholar 

  39. Singh, V.P.: Entropy-Based Parameter Estimation in Hydrology. Kluwer, Boston (1998)

    Book  Google Scholar 

  40. Singh, V.P.: Entropy Theory in Hydraulic Engineering: An Introduction, p. 785. ASCE Press, Reston (2014)

    Book  Google Scholar 

  41. Singh, V.P.: Introduction to Tsallis Entropy Theory in Water Engineering, p. 434. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

  42. Singh, V.P., Luo, H.: Entropy theory for distribution of one dimensional velocity in open channels. J. Hydrol. Eng., 725–735 (2011). https://doi.org/10.1061/(ASCE)HE.1943-5584.0000363

    Article  Google Scholar 

  43. Vajravelu, K., Van Gorder, R.: Nonlinear Flow Phenomena and Homotopy Analysis. Springer, Berlin (2013)

    MATH  Google Scholar 

  44. Van Gorder, R.A., Vajravelu, K.: Analytic and numerical solutions to the Lane–Emden equation. Phys. Lett. A 372(39), 6060–6065 (2008)

    Article  MathSciNet  Google Scholar 

  45. Vanoni, V.A.: Experiments on the transportation of suspended sediment by water. Ph.D. thesis, California Institute of Technology, Pasadina (1940)

  46. von Karman, T.: Some aspects of the turbulence problem. In: MechEng, pp. 407–412 (1935)

  47. Waldrip, S.H., Niven, R.K., Abel, M., Schlegel, M.: Maximum entropy analysis of hydraulic pipe flow networks. J. Hydraul. Eng. 142, 04016028 (2016)

    Article  Google Scholar 

  48. Whitaker, N., Turkington, B.: Maximum entropy states for rotating vortex patches. Phys. Fluids 6(12), 3963–3973 (1994)

    Article  MathSciNet  Google Scholar 

  49. Wilson, A.G.: The use of the concept of entropy in system modelling. Oper. Res. Q. 21(2), 247–265 (1970)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manotosh Kumbhakar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Convergence theorems for series solution Eq. (45)

Appendix A: Convergence theorems for series solution Eq. (45)

Theorem 1

If the homotopy series \(\sum \nolimits _{m=0}^\infty {w_{m}(\hat{y})} \) and \(\sum \nolimits _{m=0}^\infty {{w'}_{m}(\hat{y})} \) converge, then \(R_{m}\left( \vec {w}_{m-1} \right) \) given by Eq. (43) satisfies the relation \(\sum \nolimits _{m=1}^\infty {R_{m}\left( \vec {w}_{m-1} \right) } =0.\)

Proof

The auxiliary linear operator is defined as follows: \(\square \)

$$\begin{aligned} \mathcal {L}\left[ w \right] =\frac{13}{12}\frac{\hbox {d}w}{d\hat{y}}-A_{1}\lambda _{1}w \end{aligned}$$
(54)

According to Eq. (36), we obtain

$$\begin{aligned} \mathcal {L}\left[ w_{1} \right]= & {} \hslash R_{1}\left( \vec {w}_{0} \right) \end{aligned}$$
(55)
$$\begin{aligned} \mathcal {L}\left[ {w_{2}-w}_{1} \right]= & {} \hslash R_{2}\left( \vec {w}_{1} \right) \end{aligned}$$
(56)
$$\begin{aligned} \mathcal {L}\left[ {w_{3}-w}_{2} \right]= & {} \hslash R_{3}\left( \vec {w}_{2} \right) \end{aligned}$$
(57)
$$\begin{aligned} \mathcal {L}\left[ {w_{m}-w}_{m-1} \right]= & {} \hslash R_{m}\left( \vec {w}_{m-1} \right) \end{aligned}$$
(58)

Adding all of the above terms, we get

$$\begin{aligned} \mathcal {L}\left[ w_{m} \right] =\hslash \sum \limits _{k=1}^m {R_{k}\left( \vec {w}_{k-1} \right) } \end{aligned}$$
(59)

As the series \(\sum \nolimits _{m=0}^\infty {w_{m}(\hat{y})} \) and \(\sum \nolimits _{m=0}^\infty {{w'}_{m}(\hat{y})} \) are convergent, \(\hbox {lim}_{m{\rightarrow }{\infty }}w_{m}\left( \hat{y} \right) =0\) and \(\hbox {lim}_{m{\rightarrow }{\infty }}{w'}_{m}\left( \hat{y} \right) =0\). Now, recalling the above summand and taking the limit, the required result follows as

$$\begin{aligned} \hslash \sum \limits _{k=1}^\infty {R_{k}\left( \vec {w}_{k-1} \right) } =\lim _{m{\rightarrow }{\infty }}{\hslash \sum \limits _{k=1}^m {R_{k}\left( \vec {w}_{k-1} \right) } =\lim _{m{\rightarrow }{\infty }}{\mathcal {L}\left[ w_{m} \right] }=\lim _{m{\rightarrow }{\infty }}\, \left[ \frac{13}{12}{w'}_{m}-A_{1}\lambda _{1}w_{m} \right] }=0 \end{aligned}$$
(60)

Theorem 2

If \(\hslash \) is so properly chosen that the series \(\sum \nolimits _{m=0}^\infty {w_{m}(\hat{y})} \) and \(\sum \nolimits _{m=0}^\infty {{w'}_{m}(\hat{y})} \) converge absolutely to \(w(\hat{y})\) and \(w'(\hat{y})\), respectively, then the homotopy series \(\sum \nolimits _{m=0}^\infty {w_{m}(\hat{y})} \) satisfies the original governing Eq. (40).

Proof

We first recall the following definition: \(\square \)

Cauchy Product of two infinite series Let \(\sum \nolimits _{i=0}^\infty a_{i} \) and \(\sum \nolimits _{j=0}^\infty b_{j} \) be two infinite series of real/complex terms. Then, the Cauchy product of the above two series is defined by the discrete convolution as follows:

$$\begin{aligned} \left( \sum \limits _{i=0}^\infty a_{i} \right) \left( \sum \limits _{j=0}^\infty b_{j} \right) = \sum \limits _{k=0}^\infty \sum \limits _{l=0}^k {a_{l}b_{k-l}} \end{aligned}$$
(61)

Therefore, using the above rule in relation to Eq. (43), we get

$$\begin{aligned}&\sum \limits _{m=1}^\infty \sum \limits _{j=0}^{m-1} {w_{j}w_{m-1-j}} =\left( \sum \limits _{m=0}^\infty w_{m} \right) \left( \sum \limits _{k=0}^\infty w_{k} \right) =\left( \sum \limits _{m=0}^\infty w_{m} \right) ^{2} \end{aligned}$$
(62)
$$\begin{aligned}&\sum \limits _{m=1}^\infty {\sum \limits _{j=0}^{m-1} {w_{m-1-j}\sum \limits _{k=0}^j w_{k} } w_{j-k}} =\left( \sum \limits _{m=0}^\infty w_{m} \right) ^{3} \end{aligned}$$
(63)
$$\begin{aligned}&\sum \limits _{m=1}^\infty {\sum \limits _{j=0}^{m-1} {w_{m-1-j}\sum \limits _{k=0}^j w_{k} } {w'}_{j-k}} =\left( \sum \limits _{m=0}^\infty w_{m} \right) ^{2}\left( \sum \limits _{m=0}^\infty {w'}_{m} \right) \end{aligned}$$
(64)
$$\begin{aligned}&\sum \limits _{m=1}^\infty {\sum \limits _{j=0}^{m-1} {w_{m-1-j}\sum \limits _{k=0}^j w_{j-k} \sum \limits _{l=0}^k w_{l} } w_{k-l}} =\left( \sum \limits _{m=0}^\infty w_{m} \right) ^{4} \end{aligned}$$
(65)
$$\begin{aligned}&\sum \limits _{m=1}^\infty {\sum \limits _{j=0}^{m-1} {w_{m-1-j}\sum \limits _{k=0}^j w_{j-k} \sum \limits _{l=0}^k w_{k-l} \sum \limits _{n=0}^l w_{n} } w_{l-n}} =\left( \sum \limits _{m=0}^\infty w_{m} \right) ^{5} \end{aligned}$$
(66)

Theorem 1 shows that if \(\sum \nolimits _{m=0}^\infty {w_{m}(z)} \) and \(\sum \nolimits _{m=0}^\infty {{w'}_{m}(z)} \) converge, then \(\sum \nolimits _{m=1}^\infty {R_{m}\left( \vec {w}_{m-1} \right) } =0\).

Therefore, substituting the above expressions in Eq. (43) and simplifying further lead to

$$\begin{aligned}&\frac{13}{12}\sum \limits _{m=0}^\infty w_{m}^{'} -\left( \sum \limits _{m=0}^\infty w_{m}^{'} \right) \left( \sum \limits _{m=0}^\infty w_{m} \right) ^{2}\\&\quad -A_{1}\left[ \sum \limits _{m=0}^\infty {(1-\chi _{m+1})} +\lambda _{1}\sum \limits _{m=0}^\infty w_{m} +\left( \frac{\lambda _{1}^{2}}{2!} \right) \left( \sum \limits _{m=0}^\infty w_{m} \right) ^{2}+\left( \frac{\lambda _{1}^{3}}{3!} \right) \left( \sum \limits _{m=0}^\infty w_{m} \right) ^{3}\right. \\&\quad \left. +\left( \frac{\lambda _{1}^{4}}{4!} \right) \left( \sum \limits _{m=0}^\infty w_{m} \right) ^{4}+\left( \frac{\lambda _{1}^{5}}{5!} \right) \left( \sum \limits _{m=0}^\infty w_{m} \right) ^{5} \right] =0 \end{aligned}$$

which is basically the original governing equation Eq. (40). Furthermore, subject to the initial condition \(w_{0}\left( 0 \right) =-1/2\) and the conditions for the higher-order deformation equation \({w}_{m}\left( 0 \right) =0\), for \(m\ge 1\), we easily obtain

$$\begin{aligned} \sum \limits _{m=0}^\infty {w_{m}(0)} =-\frac{1}{2} \end{aligned}$$
(67)

Hence, the convergence result follows.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumbhakar, M., Ghoshal, K. & Singh, V.P. Application of relative entropy theory to streamwise velocity profile in open-channel flow: effect of prior probability distributions. Z. Angew. Math. Phys. 70, 80 (2019). https://doi.org/10.1007/s00033-019-1124-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1124-0

Keywords

Mathematics Subject Classification

Navigation