Skip to main content
Log in

Uniform stabilization of wave equation with localized internal damping and acoustic boundary condition with viscoelastic damping

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we deal with the uniform stabilization to the mixed problem for a nonlinear wave equation and acoustic boundary conditions on a non-locally reacting boundary. The main purpose is to study the stability when the internal damping acts only over a subset \(\omega \) of the domain \(\Omega \) and the boundary damping is of the viscoelastic type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beale, J.T.: Spectral properties of an acoustic boundary condition. Indiana Univ. Math. J. 25, 895–917 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beale, J.T., Rosencrans, S.I.: Acoustic boundary conditions. Bull. Am. Math. Soc. 80(6), 1276–1278 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bortot, C.A., Cavalcanti, M.M., Corrêa, W.J., Cavalcanti, D.V.N.: Uniform decay rate estimates for Schrödinger and plate equations with nonlinear locally distributed damping. J. Differ. Equ. 254, 3729–3764 (2013)

    Article  MATH  Google Scholar 

  4. Boukhatem, Y., Benabderrahmane, B.: Existence and decay of solutions for a viscoelastic wave equation with acoustic boundary conditions. Nonlinear Anal. 97, 191–209 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boukhatem, Y., Benabderrahmane, B.: Polynomial decay and blow up of solutions for variable coefficients viscoelastic wave equation with acoustic boundary conditions. Acta Math. Sin. Engl. Ser. 32(2), 153–174 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cavalcanti, M.M., Domingos Cavalcanti, V.D., Lasiecka, I.: Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction. J. Differ. Equ. 236, 407–459 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Fukuoka, R., Soriano, J.A.: Asymptotic stability of the wave equation on compact surfaces and locally distributed damping-a sharp result. Trans. Amer. Math. Soc. 361(9), 4561–4580 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Fukuoka, R., Toundykov, D.: Stabilization of the damped wave equation with Cauchy–Ventcel boundary conditions. J. Evol. Equ. 9(1), 143–169 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Fukuoka, R., Soriano, J.A.: Asymptotic stability of the wave equation on compact manifolds and locally distributed damping: a sharp result. Arch. Ration. Mech. Anal. 197, 925–964 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cavalcanti, M.M., Domingos Cavalcanti, V.D., Lasiecka, I., Falcão Nascimento, F.A.: Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects. Discrete Continuous Dyn. Syst. Ser. B 19(7), 1987–2012 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coleman, B.D., Gurtin, M.E.: Waves in materials with memory II. On the growth and decay of one-dimensional acceleration waves. Arch. Ration. Mech. Anal. 19(4), 239–265 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cousin, A.T., Frota, C.L., Larkin, N.A.: Global solvability and asymptotic behaviour of a hyperbolic problem with acoustic boundary conditions. Funkcialaj Ekvacioj 44, 471–485 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Frota, C.L., Larkin, N.A.: Uniform stabilization for a hyperbolic equation with acoustic boundary conditions in simple connected domains. Prog. Nonlinear Differ. Equ. Their Appl. 66, 297–312 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frota, C.L., Cousin, A.T., Larkin, N.A.: On a system of Klein–Gordon type equations with acoustic boundary conditions. J. Math. Anal. Appl. 293, 293–309 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Frota, C.L., Medeiros, L.A., Vicente, A.: Wave equation in domains with non-locally reacting boundary. Differ. Integral Equ. 24(11–12), 1001–1020 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Graber, P.J.: Strong stability and uniform decay of solutions to a wave equation with semilinear porous acoustic boundary conditions. Nonlinear Anal. TMA 74, 3137–3148 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Graber, P.J.: Uniform boundary stabilization of a wave equation with nonlinear acoustic boundary conditions and nonlinear boundary damping. J. Evol. Equ. 12, 141–164 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Graber, P.J., Said-Houari, B.: On the wave equation with semilinear porous acoustic boundary conditions. J. Differ. Equ. 252, 4898–4941 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lasiecka, I., Tataru, D.: Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Differ. Integral Equ. 6(3), 507–533 (1993)

    MathSciNet  MATH  Google Scholar 

  20. Lasiecka, I., Messaoudi, S.A., Mustafa, M.I.: Note on intrinsic decay rates for abstract wave equations with memory. J. Math. Phys. 54, 031504 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lions, J.L.: Controlabilité exacte, perturbations et stabilisation de systèmes distribuè. Tome I, Masson (1988)

  22. Liu, W.: Arbitrary rate of decay for a viscoelastic equation with acoustic boundary conditions. Appl. Math. Lett. 38, 155–161 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, W., Sun, Y.: General decay of solutions for a weak viscoelastic equation with acoustic boundary conditions. Z. Angew. Math. Phys. 65, 125–134 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. MacCamy, R.C.: Existence, uniqueness and stability of solution of the equation \(u_{tt}=\frac{\partial }{\partial x}(\sigma (u_x)+\lambda (u_x)u_{tt})\). Indiana Univ. Math. J. 20(3), 231–238 (1970)

    Article  MathSciNet  Google Scholar 

  25. MacCamy, R.C.: A model for one-dimensional, nonlinear viscoelasticity. Q. Appl. Math. 35(1), 21–33 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  26. Park, J.Y., Park, S.H.: Decay rate estimates for wave equations of memory type with acoustic boundary conditions. Nonlinear Anal. TMA 74, 993–998 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Vicente, A.: Wave equation with acoustic/memory boundary conditions. Boletim da Sociedade Paranaense de Matemática 27, 29–39 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vicente, A., Frota, C.L.: Nonlinear wave equation with weak dissipative term in domains with non-locally reacting boundary. Wave Motion 50, 162–169 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vicente, A., Frota, C.L.: On a mixed problem with a nonlinear acoustic boundary condition for a non-locally reacting boundaries. J. Math. Anal. Appl. 407, 328–338 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vicente, A., Frota, C.L.: Uniform stabilization of wave equation with localized damping and acoustic boundary condition. J. Math. Anal. Appl. 436, 639–660 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wu, J.: Uniform energy decay of a variable coefficient wave equation with nonlinear acoustic boundary conditions. J. Math. Anal. Appl. 399, 369–377 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Vicente.

Additional information

A. Vicente was supported in part by Fundação Araucária conv. 151/2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frota, C.L., Vicente, A. Uniform stabilization of wave equation with localized internal damping and acoustic boundary condition with viscoelastic damping. Z. Angew. Math. Phys. 69, 85 (2018). https://doi.org/10.1007/s00033-018-0977-y

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-018-0977-y

Mathematics Subject Classification

Keywords

Navigation