Skip to main content
Log in

Systems with a constant heat flux with applications to radiative heat transport across nanoscale gaps and layers

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We extend the statistical analysis of equilibrium systems to systems with a constant heat flux. This extension leads to natural generalizations of Maxwell–Boltzmann’s and Planck’s equilibrium energy distributions to energy distributions of systems with a net heat flux. This development provides a long needed foundation for addressing problems of nanoscale heat transport by a systematic method based on a few fundamental principles. As an example, we consider the computation of the radiative heat flux between narrowly spaced half-spaces maintained at different temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cravalho, E.G., Tien, C.L., Caren, R.P.: Effect of small spacing on radiative transfer between two dielectrics. J. Heat Transf. 89(3), 351–358 (1967). https://doi.org/10.1115/1.3614396

    Article  Google Scholar 

  2. Domoto, G.A., Boehm, R.F., Tien, C.L.: Experimental investigation of radiative transfer between metallic surfaces at cryogenic temperatures. J. Heat Transf. 92(3), 412–416 (1970). https://doi.org/10.1115/1.3449677

    Article  Google Scholar 

  3. Newton, I.: A scale of the degrees of heat. Philos. Trans. R. Soc. Lond. Abr. 4, 572–575 (1809). (Translation from Latin, published anonymously in 1701)

    Google Scholar 

  4. Fourier, J.: The Analytical Theory of Heat. The University Press, Cambridge (1878). https://doi.org/10.5962/bhl.title.18544

    MATH  Google Scholar 

  5. Boltzmann, L.: Lectures on Gas Theory. Dover, New York (1995)

    Google Scholar 

  6. Gibbs, J.W.: Elementary Principles in Statistical Mechanics, Developed with Especial Reference to the Rational Foundation of Thermodynamics. Dover, New York (1960)

    MATH  Google Scholar 

  7. Landau, L.D., Lifshitz, F.M., Pitaevskii, L.P.: Statistical Physics, Part 1. Course of Theoretical Physics, vol. 5, 3rd edn. Elsevier, Amsterdam (2007)

    Google Scholar 

  8. Feynman, R.P.: Statistical Mechanics: A Set of Lectures. Addison-Wesley, Reading (1998)

    MATH  Google Scholar 

  9. Tien, Ch L, Lienhard, J.H.: Statistical Thermodynamics. Thermal and Fluids Engineering. Hemisphere Pub. Corp., Washington (1979)

    Google Scholar 

  10. Feynman, R .P., Leighton, R .B., Sands, M .L.: The Feynman Lectures on Physics, vol. 1, 3rd edn. Pearson, Boston (2006)

    MATH  Google Scholar 

  11. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620–630 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  12. Khinchin, A.Ya.: The concept of entropy in the theory of probability. Uspekhi Mat. Nauk 8(3), 3–20 (1953)

    MathSciNet  MATH  Google Scholar 

  13. Khinchin, A.Ya.: Mathematical Foundations of Statistical Mechanics. Dover, New York (1949)

    MATH  Google Scholar 

  14. Zubarev, D.N.: Nonequilibrium Statistical Thermodynamics. Consultants Bureau, Cambridge (1974)

    Google Scholar 

  15. Zeldovich, Ya B., Raizer, YuP: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover, Mineola (2002)

    Google Scholar 

  16. Holian, B.L.: Entropy of a nonequilibrium system. Phys. Rev. A 33(2), 1152–1157 (1986)

    Article  MathSciNet  Google Scholar 

  17. Miller, B.N., Larson, P.M.: Heat flow in a linear harmonic chain: an information-theoretic approach to the nonequilibrium stationary state. Phys. Rev. A 20, 1717–1727 (1979)

    Article  Google Scholar 

  18. Ferrer, M., Jou, D.: Information-theoretical description of a classical relativistic gas under a steady heat flux. Am. J. Phys. 63, 237–242 (1995)

    Article  Google Scholar 

  19. De Masi, A., Olla, S.: Quasi-static hydrodynamic limits. J. Stat. Phys. 161, 1037 (2015). https://doi.org/10.1007/s10955-015-1383-x

    Article  MathSciNet  MATH  Google Scholar 

  20. Filyukov, A.A., Karpov, V.Ya.: Description of steady transport processes by the method of the most probable path of evolution. Inzhenerno-Fizicheskii Zhurnal 13(6), 326 (1967). https://doi.org/10.1007/BF00832348

    Google Scholar 

  21. Filyukov, A.A., Karpov, V.Ya.: Method of the most probable path of evolution in the theory of stationary irreversible processes. J. Eng. Phys. 13, 416–804 (1967). https://doi.org/10.1007/BF00828961

    Article  Google Scholar 

  22. Fort, J., Jou, D., Llebot, J.E.: Temperature and measurement: comparison between two models of non-equilibrium radiation. Phys. A 269, 439–454 (1999)

    Article  Google Scholar 

  23. Born, M.: Atomic Physics, 8th edn. Dover, New York (1989)

    Google Scholar 

  24. Budaev, B.V., Bogy, D.B.: Extension of Planck’s law of thermal radiation to systems with a steady heat flux. Ann. Phys. 523(10), 791–804 (2011). https://doi.org/10.1002/andp.201100135

    Article  MATH  Google Scholar 

  25. Budaev, B.V., Bogy, D.B.: A wave theory of heat transport with applications to Kapitsa resistance and thermal rectification. Proc. R. Soc. A 473, 20160584 (2017). https://doi.org/10.1098/rspa.2016.0584

    Article  MathSciNet  Google Scholar 

  26. Budaev, B.V., Bogy, D.B.: Thermal rectification in inhomogeneous nanotubes. Appl. Phys. Lett. 109(23), 231905 (2016). https://doi.org/10.1063/1.4971390

    Article  Google Scholar 

  27. Planck, M.: Üeber das Gesetz der Energieverteilung im Normalspectrum. Ann. Phys. 309(3), 553–563 (1901)

    Article  MATH  Google Scholar 

  28. Budaev, B.V., Bogy, D.B.: Heat transport by phonon tunneling across layered structures used in heat assisted magnetic recording (HAMR). J. Appl. Phys. 117, 104512 (2015). https://doi.org/10.1063/1.4914871

    Article  Google Scholar 

  29. Pendry, J.B., Sasihithlu, K., Craster, R.V.: Phonon-assisted heat transfer between vacuum-separated surfaces. Phys. Rev. B 94, 075414 (2016)

    Article  Google Scholar 

  30. Khalatnikov, I.M.: Heat exchange between solid and Helium-II. JETP 22(6), 687–704 (1952)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bair V. Budaev.

Additional information

This work was supported by the Mechanical Engineering Sciences Graduate Fellowship Fund at UC Berkeley established by D. B. Bogy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budaev, B.V., Bogy, D.B. Systems with a constant heat flux with applications to radiative heat transport across nanoscale gaps and layers. Z. Angew. Math. Phys. 69, 71 (2018). https://doi.org/10.1007/s00033-018-0950-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-018-0950-9

Keywords

Mathematics Subject Classification

Navigation