Skip to main content
Log in

Global existence and incompressible limit in critical spaces for compressible flow of liquid crystals

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The Cauchy problem for the compressible flow of nematic liquid crystals in the framework of critical spaces is considered. We first establish the existence and uniqueness of global solutions provided that the initial data are close to some equilibrium states. This result improves the work by Hu and Wu (SIAM J Math Anal 45(5):2678–2699, 2013) through relaxing the regularity requirement of the initial data in terms of the director field. Based on the global existence, we then consider the incompressible limit problem for ill prepared initial data. We prove that as the Mach number tends to zero, the global solution to the compressible flow of liquid crystals converges to the solution to the corresponding incompressible model in some function spaces. Moreover, the accurate converge rates are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Volume 343 of Grundlehren der Mathematischen Wissenschaften. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  2. Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. (4) 14(2), 209–246 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chemin, J.-Y., Gallagher, I., Iftimie, D., Ball, J., Welsh, D.: Perfect Incompressible Fluids. Clarendon Press, Oxford (1998)

    Google Scholar 

  4. Chemin, J.-Y., Lerner, N.: Flot de champs de vecteurs non lipschitziens et équations de Navier–Stokes. J. Differ. Equ. 121(2), 314–328 (1995)

    Article  MATH  Google Scholar 

  5. Danchin, R.: Global existence in critical spaces for compressible Navier–Stokes equations. Invent. Math. 141(3), 579–614 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Danchin, R.: Zero Mach number limit in critical spaces for compressible Navier–Stokes equations. Ann. Sci. École Norm. Sup. (4) 35(1), 27–75 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Desjardins, B., Grenier, E.: Low Mach number limit of viscous compressible flows in the whole space. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455(1986), 2271–2279 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ding, S., Huang, J., Wen, H., Zi, R.: Incompressible limit of the compressible nematic liquid crystal flow. J. Funct. Anal. 264(7), 1711–1756 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ding, S., Lin, J., Wang, C., Wen, H.: Compressible hydrodynamic flow of liquid crystals in 1-D. Discrete Contin. Dyn. Syst. 32(2), 539–563 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ding, S., Wang, C., Wen, H.: Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one. Discrete Contin. Dyn. Syst. Ser. B 15(2), 357–371 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Ericksen, J.L.: Conservation laws for liquid crystals. Trans. Soc. Rheol. 5, 23–34 (1961)

    Article  MathSciNet  Google Scholar 

  12. Ericksen, J.L.: Hydrostatic theory of liquid crystals. Arch. Ration. Mech. Anal. 9, 371–378 (1962)

    MathSciNet  MATH  Google Scholar 

  13. Fang, D., Zi, R.: Incompressible limit of Oldroyd-B fluids in the whole space. J. Differ. Equ. 256(7), 2559–2602 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ginibre, J., Velo, G.: Generalized Strichartz inequalities for the wave equation. J. Funct. Anal. 133(1), 50–68 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hao, Y.: Incompressible limit of a compressible liquid crystals system. Acta Math. Sci. Ser. B Engl. Ed. 33(3), 781–796 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hong, M.-C.: Global existence of solutions of the simplified Ericksen–Leslie system in dimension two. Calc. Var. Partial Differ. Equ. 40(1–2), 15–36 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu, X., Wu, H.: Global solution to the three-dimensional compressible flow of liquid crystals. SIAM J. Math. Anal. 45(5), 2678–2699 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, T., Wang, C., Wen, H.: Blow up criterion for compressible nematic liquid crystal flows in dimension three. Arch. Ration. Mech. Anal. 204(1), 285–311 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, T., Wang, C., Wen, H.: Strong solutions of the compressible nematic liquid crystal flow. J. Differ. Equ. 252(3), 2222–2265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiang, F., Jiang, S., Wang, D.: On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain. J. Funct. Anal. 265(12), 3369–3397 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang, F., Jiang, S., Wang, D.: Global weak solutions to the equations of compressible flow of nematic liquid crystals in two dimensions. Arch. Ration. Mech. Anal. 214(2), 403–451 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jiang, S., Ju, Q., Li, F.: Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions. Comm. Math. Phys. 297(2), 371–400 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120(5), 955–980 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kwon, Y.S.: Incompressible limit for the compressible flows of nematic liquid crystals in the whole space. Adv. Math. Phys. 2015, 1–7 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Leslie, F.M.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28(4), 265–283 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lin, F.: Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena. Comm. Pure Appl. Math. 42(6), 789–814 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lin, F., Lin, J., Wang, C.: Liquid crystal flows in two dimensions. Arch. Ration. Mech. Anal. 197(1), 297–336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lin, F., Liu, C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. Comm. Pure Appl. Math. 48(5), 501–537 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lin, F., Wang, C.: Global existence of weak solutions of the nematic liquid crystal flow in dimension three. Comm. Pure Appl. Math. 69, 1532–1571 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lin, J., Lai, B., Wang, C.: Global Finite Energy Weak Solutions to the Compressible Nematic Liquid Crystal Flow in Dimension Three. arXiv:1408.4149

  31. Lions, P.-L.: Mathematical Topics in fluid mechanics, Vol. 2. Compressible Models, Volume 10 of Oxford Lecture Series in Mathematics and its Applications, Oxford Science Publications. Clarendon Press, Oxford University Press, New York (1998)

  32. Lions, P.-L., Masmoudi, N.: Incompressible limit for a viscous compressible fluid. Journal de mathématiques pures et appliquées 77(6), 585–627 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ou, Y.: Low mach number limit of viscous polytropic fluid flows. J. Differ. Equ. 251(8), 2037–2065 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Qi, G., Xu, J.: The low Mach number limit for the compressible flow of liquid crystals in the whole space. Appl. Math. Comp. 297, 39–49 (2017)

    Article  Google Scholar 

  35. Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, Volume 3. Walter de Gruyter, Berlin (1996)

  36. Strichartz, R.S.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44(3), 705–714 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, D., Yu, C.: Incompressible limit for the compressible flow of liquid crystals. J. Math. Fluid Mech. 16(4), 771–786 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Xu, F., Hao, S., Yuan, J.: Well-posedness for the density-dependent incompressible flow of liquid crystals. Math. Methods Appl. Sci. 38(13), 2680–2702 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiru Wang.

Additional information

Research Supported by the NNSF of China (Nos. 11271379, 11271381, 11671406, 11601164, 11701325), the National Basic Research Program of China (973 Program) (Grant No. 2010CB808002) and the Scientific Research Funds of Huaqiao University (No. 15BS201).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bie, Q., Cui, H., Wang, Q. et al. Global existence and incompressible limit in critical spaces for compressible flow of liquid crystals. Z. Angew. Math. Phys. 68, 113 (2017). https://doi.org/10.1007/s00033-017-0862-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-017-0862-0

Mathematics Subject Classification

Keywords

Navigation