Skip to main content
Log in

A time-periodic reaction–diffusion epidemic model with infection period

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we propose a time-periodic and diffusive SIR epidemic model with constant infection period. By introducing the basic reproduction number \({\mathcal{R}_0}\) via a next generation operator for this model, we show that the disease goes extinction if \({\mathcal{R}_0 < 1}\) ; while the disease is uniformly persistent if \({\mathcal{R}_0 > 1}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bacaër N., Ait Dads E.: Genealogy with seasonality, the basic reproduction number, and the influenza pandemic. J. Math. Biol. 62, 741–762 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bacaër N., Ait Dads E.: On the biological interpretation of a definition for the parameter R 0 in periodic population models. J. Math. Biol. 65, 601–621 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bacaër N., Guernaoui S.: The epidemic threshold of vector-borne diseases with seasonality. J. Math. Biol. 53, 421–436 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Capasso V., Serio G.: A generalization of the Kermack-Mckendrick deterministic epidemic model. Math. Biosci. 42, 41–61 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Daners D., Koch Medina P.: Abstract Evolution Equations, Periodic Problems and Applications, Pitman Research Notes in Mathematics Series. Vol. 279, Longman, Harlow (1992)

  6. Diekmann O., Heesterbeek J.A.P., Metz J.A.J.: On the definition and the computation of the basic reproduction ratio R 0 in models of infectious disease in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Drnovšek R.: Bounds for the spectral radius of positive operators. Comment. Math. Univ. Carolin. 41, 459–467 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Friedman A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  9. Hess P.: Periodic-Parabolic Boundary Value Problems and Positivity. Longman Scientific and Technical, Harlow (1991)

    MATH  Google Scholar 

  10. Hirsch M.W., Smith H.L., Zhao X.-Q.: Chain transitivity, attractivity and strong repellors for semidynamical systems. J. Dyn. Differ. Equ. 13, 107–131 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Inaba H.: On a new perspective of the basic reproduction number in heterogeneous environments. J. Math. Biol. 65, 309–348 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kato T.: Perturbation Theory for Linear Operators. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  13. Lloyd A.: Realistic distributions of infectious periods in epidemic models: Changing patterns of persistence and dynamics. Theor. Popul. Biol. 60, 59–71 (2001)

    Article  Google Scholar 

  14. Lou Y., Zhao X.-Q.: Threshold dynamics in a time-delayed periodic SIS epidemic model. Discret. Contin. Dyn. Syst. Ser. B 12, 169–186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Magal P., Zhao X.-Q.: Global attractors and steady states for uniformly persistent dynamical systems. SIAM J. Math. Anal. 37, 251–275 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Martin R.H., Smith H.L.: Abstract functional differential equations and reaction-diffusion systems. Trans. Am. Math. Soc. 321, 1–44 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Metz J.A.J., Diekmann O.: The Dynamics of Physiologically Structured Populations. Springer, New York (1986)

    Book  MATH  Google Scholar 

  18. Peng R., Zhao X.-Q.: A reaction-diffusion SIS epidemic model in a time-periodic environment. Nonlinearity 25, 1451–1471 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rebelo C., Margheri A., Bacaër N.: Persistence in some periodic epidemic models with infection age or constant periods of infection. Discret. Contin. Dyn. Syst. B 19, 1451–1471 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Thieme H.R.: Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J. Appl. Math. 70, 188–211 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. van den Driessche P., Watmough J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang W., Zhao X.-Q.: An epidemic model with population dispersal and infection period. SIAM J. Appl. Math. 66, 1454–1472 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang W., Zhao X.-Q.: Threshold dynamics for compartmental epidemic models in periodic environments. J. Dynam. Differ. Equ. 20, 699–717 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang L., Wang Z.-C., Zhao X.-Q.: Threshold dynamics of a time periodic reaction-diffusion epidemic model with latent period. J. Differ. Equ. 258, 3011–3036 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang Y., Zhao X.-Q.: A reaction-diffusion Lyme disease model with seasonality. SIAM. J. Appl. Math. 73, 2077–2099 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhao X.-Q.: Dynamical Systems in Population Biology. Springer, New York (2003)

    Book  MATH  Google Scholar 

  27. Zhao X.-Q.: Basic reproduction ratios for periodic compartmental models with time delay, J. Dynam. Diff. Eqns. (2015). doi:10.1007/s10884-015-9425-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Cheng Wang.

Additional information

Research was partially supported by NSF of China (11371179).

Research was partially supported by the China Scholarship Council and the Fundamental Research Funds for the Central Universities (lzujbky-2015-210).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, ZC. A time-periodic reaction–diffusion epidemic model with infection period. Z. Angew. Math. Phys. 67, 117 (2016). https://doi.org/10.1007/s00033-016-0711-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-016-0711-6

Mathematics Subject Classification

Keywords

Navigation