Skip to main content
Log in

Standing waves for nonlinear Schrödinger equations involving critical growth of Trudinger–Moser type

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we deal with the following singularly perturbed elliptic problem

$$\begin{array}{ll}-\varepsilon^2\Delta u+V(x)u=f(u),\quad u \in H^1(\mathbb{R}^2),\end{array}$$

where f(s) has critical growth of Trudinger–Moser type. In this paper, we construct a localized bound-state solution concentrating at an isolated component of the positive local minimum points of V as \({\varepsilon \rightarrow 0}\) under certain conditions on f(s). Our results complete the analysis made in Byeon et al. (Commun Partial Differ Equ 33: 1113–1136, 2008) for the two-dimensional case, in the sense that, in that paper only the subcritical growth was considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adimurthi: Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n-Laplacian. Ann. Sc. Norm. Super. Pisa Cl. Sci. 17, 393–413 (1990)

    MATH  MathSciNet  Google Scholar 

  2. Alves C.O., Souto M.A.S., Montenegro M.: Existence of a ground state solution for a nonlinear scalar field equation with critical growth. Calc. Var. Partial Differ. Equ. 43, 537–554 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berestycki H., Lions P.L.: Nonlinear scalar field equations I. Existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–346 (1983)

    MATH  MathSciNet  Google Scholar 

  4. Berestycki H., Gallouët T., Kavian O.: Equations de champs scalaires euclidens non linéires dans le plan. C. R. Acad. Sc. Paris Série I-Math. 297, 307–310 (1983)

    MATH  Google Scholar 

  5. Byeon J., Jeanjean L.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Ration. Mech. Anal. 185, 185–200 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Byeon J.: Mountain pass solutions for singularly perturbed nonlinear Dirichlet problems. J. Differ. Equ. 217, 257–281 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Byeon J., Tanaka K.: Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential. J. Eur. Math. Soc. 15, 1859–1899 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Byeon J., Wang Z.Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 65, 295–316 (2002)

    Article  MathSciNet  Google Scholar 

  9. Byeon J.: Singularly perturbed nonlinear Dirichlet problems with a general nonlinearity. Trans. Am. Math. Soc. 362, 1981–2001 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Byeon J., Jeanjean L., Tanaka K.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity: one and two dimensional case. Commun. Partial Differ. Equ. 33, 1113–1136 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Byeon J., Jeanjean L., Maris M.: Symmetric and monotonicity of least energy solutions. Calc. Var. Partial Differ. Equ. 36, 481–492 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cao D.M.: Nontrivial solution of semilinear elliptic equation with critical exponent in \({\mathbb{R}^2}\) . Commun. Partial Differ. Equ. 17, 407–435 (1992)

    Article  MATH  Google Scholar 

  13. D’Avenia P., Pomponio A., Ruiz D.: Semi-classical states for the nonlinear Schrödinger equation on saddle points of the potential via variational methods. J. Funct. Anal. 262, 4600–4633 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. de Figueiredo D.G., do Ó J.M., Ruf B.: Elliptic equations and systems with critical Trudinger–Moser nonlinearities. Discrete Contin. Dyn. Syst. 30, 455–476 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. del Pino M., Felmer P.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4, 121–137 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. del Pino M., Felmer P.L.: Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting. Indiana Univ. Math. J. 48, 883–898 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ding Y.H., Lin F.H.: Solutions of perturbed Schrödinger equations with critical nonlinearity. Calc. Var. Partial Differ. Equ. 30, 231–249 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. do Ó J.M., Souto M.A.S.: On a class of nonlinear Schrödinger equations in \({\mathbb{R}^2}\) involving critical growth. J. Differential Equations. 174, 289–311 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. do Ó J.M.: N-Laplacian equations in \({\mathbb{R}^N}\) with critical growth. Abst. Appl. Anal. 2, 301–315 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Evans L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  21. Floer A., Weinstein A.: Nonspreading wave packets for the cubic Schrödinger equations with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jeanjean L., Tanaka K.: A remark on least energy solution in \({\mathbb{R}^N}\) . Proc. Am. Math. Soc. 131, 2399–2408 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jost J.: Partial Differential Equations. Springer, New York (2002)

    MATH  Google Scholar 

  24. Lam N., Lu G.: Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti-Rabinowitz condition. J. Geom. Anal. 24, 118–143 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ni W.M., Wei J.: On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems. Commun. Pure Appl. Math. 48, 731–768 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ni W.M., Takagi I.: Locating the peaks of least-energy solutions to a semilinear Neumann problem. Duke Math. J. 70, 247–281 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  27. Oh Y.G.: Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V) a . Comm. Partial Differ. Equ. 13, 1499–1519 (1988)

    Article  MATH  Google Scholar 

  28. Rabinowitz P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  29. Strauss W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149–162 (1977)

    Article  MATH  Google Scholar 

  30. Wang X.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153, 229–244 (1993)

    Article  MATH  Google Scholar 

  31. Willem M.: Minimax Theorems. Birkhäuser, Boston (1996)

    Book  MATH  Google Scholar 

  32. Zhang J., Chen Z., Zou W.: Standing waves for nonlinear Schrödinger equations involving critical growth. J. Lond. Math. Soc. 90, 827–844 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Marcos do Ó.

Additional information

Research partially supported by The National Institute of Science and Technology of Mathematics ICNT-Mat, CAPES and CNPq/Brazil. J. Zhang was partially supported by CAPES/Brazil and CPSF (2013M530868).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., do Ó, J.M. Standing waves for nonlinear Schrödinger equations involving critical growth of Trudinger–Moser type. Z. Angew. Math. Phys. 66, 3049–3060 (2015). https://doi.org/10.1007/s00033-015-0565-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0565-3

Mathematics Subject Classification

Keywords

Navigation