Skip to main content
Log in

Exponential stabilization of magnetoelastic waves in a Mindlin–Timoshenko plate by localized internal damping

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This article is a continuation of our earlier work in Grobbelaar-Van Dalsen (Z Angew Math Phys 63:1047–1065, 2012) on the polynomial stabilization of a linear model for the magnetoelastic interactions in a two-dimensional electrically conducting Mindlin–Timoshenko plate. We introduce nonlinear damping that is effective only in a small portion of the interior of the plate. It turns out that the model is uniformly exponentially stable when the function \({{{\mathbf{p}}}({\mathbf{x}},{\mathbf{U}}_t)}\), that represents the locally distributed damping, behaves linearly near the origin. However, the use of Mindlin–Timoshenko plate theory in the model enforces a restriction on the region occupied by the plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avalos G., Toundykov D.: Boundary stabilization of structural acoustic interactions with interface on a Reissner–Mindlin plate. Nonlinear Anal.- Real 12, 2985–3013 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Borichev A., Tomilov Y.: Optimal polynomial decay rate of functions and operator semigroups. Math. Ann. 347, 455–478 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cavalcanti M.M., Domingos Cavalcanti V.N., Falcão Nascimento F.A., Lasiecka I., Rodrigues J.H.: Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping. Z. Angew. Math. Phys. 65, 1189–1206 (2014)

    Article  MathSciNet  Google Scholar 

  4. Charão R.C., Oliveira J.C., Perla Menzala G.: Energy decay rates of magnetoelastic waves in a bounded conductive medium. Discrete Cont. Dyn. Syst. Ser. A 25(3), 797–821 (2009)

    Article  MATH  Google Scholar 

  5. Charão R.C., Oliveira J.C., Perla Menzala G.: Decay rates of magnetoelastic waves in an unbounded conductive medium. Electron. J. Differ. Equ. 127, 1–14 (2011)

    Google Scholar 

  6. Dautray R., Lions J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 2: Functional and Variational Methods. Springer, Berlin (2000)

    Book  Google Scholar 

  7. Dunkin J.W., Eringen A.C.: On the propagation of waves in an electromagnetic elastic solid. Int. J. Eng. Sci. 1, 461–495 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duyckaerts T.: Stabilisation Haute Fréquence d’équationes aux Derivées Partielles Linéaires, Thèse de Doctorat. Université Paris XI, Orsay (2004)

    Google Scholar 

  9. Fernandes A., Pouget J.: An accurate modelling of piezoelectric multi-layer plates. Eur. J. Mech. 21, 629–651 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fernández Sare H.D.: On the stability of Mindlin–Timoshenko plates. Q. Appl. Math. LXVII(2), 249–263 (2009)

    Article  Google Scholar 

  11. Grobbelaar-Van Dalsen M.: On a structural acoustic model with interface a Reissner–Mindlin plate or a Timoshenko beam. J. Math. Anal. Appl. 320, 121–144 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grobbelaar-Van Dalsen M.: Uniform stabilization of a nonlinear structural acoustic model with a Timoshenko beam interface. Math. Meth. Appl. Sci. 29, 1749–1766 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grobbelaar-Van Dalsen M.: On a structural acoustic model which incorporates shear and thermal effects in the structural component. J. Math. Anal. Appl. 341, 1253–1270 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grobbelaar-Van Dalsen M.: Strong stabilization of a structural acoustic model which incorporates shear and thermal effects in the structural component. Math. Meth. Appl. Sci. 33, 1433–1445 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Grobbelaar-Van Dalsen M.: Strong stabilization of models incorporating the thermoelastic Reissner–Mindlin plate equations with second sound. Appl. Anal. 90, 1419–1449 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grobbelaar-Van Dalsen M.: On the dissipative effect of a magnetic field in a Mindlin–Timoshenko plate model. Z. Angew. Math. Phys. 63, 1047–1065 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grobbelaar-Van Dalsen M.: Stabilization of a thermoelastic Mindlin–Timoshenko plate model revisited. Z. Angew. Math. Phys. 64, 1305–1325 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grobbelaar-Van Dalsen M.: Polynomial decay rates of a thermoelastic Mindlin–Timoshenko plate model with Dirichlet boundary conditions. Z. Angew. Math. Phys. 66, 113–128 (2015)

    Article  MathSciNet  Google Scholar 

  19. Kim J.U., Renardy Y.: Boundary control of the Timoshenko beam. SIAM J. Control Optim. 25, 1417–1429 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Krommer M.: Piezoelectric vibrations of composite Reissner–Mindlin type plates. J. Sound Vib. 263, 871–891 (2003)

    Article  Google Scholar 

  21. Lagnese, J.: Boundary Stabilization of Thin Plates. SIAM Studies in Applied Mathematics SIAM, Philadelphia (1989)

  22. Lasiecka I., Tataru D.: Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Differ. Integral Equ. 6(3), 507–533 (1993)

    MathSciNet  MATH  Google Scholar 

  23. Lions, J.L.: Contrôlabilité Exacte, Perturbations et Stabilization de Systèmes Distribués, Tome 1, Contrôlabilité Exacte, Masson, RMA 8, Paris (1988)

  24. Mindlin R.D.: Influence of rotary inertia and shear on flexural motions of isotropic elastic plates. J. Appl. Mech. 18, 31–38 (1951)

    MATH  Google Scholar 

  25. Mindlin R.D.: Thickness-shear and flexural vibrations of crystal plates. J. Appl. Phys. 22, 316–323 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  26. Muñoz Rivera J.E., Racke R.: Polynomial stability in two-dimensional magneto-elasticity. IMA J. Appl. Math. 66, 359–384 (2001)

    Article  Google Scholar 

  27. Muñoz Rivera J.E., Racke R.: Mildly dissipative nonlinear Timoshenko systems. J. Math. Anal. Appl. 276, 248–278 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Muñoz Rivera J.E., Racke R.: Global stability for damped Timoshenko sytems. Discrete Contin. Dyn. Syst. Ser. B 9(6), 1625–1639 (2003)

    Article  MATH  Google Scholar 

  29. Muñoz Rivera J.E., Portillo Oquendo H.: Asymptotic behavior on a Mindlin–Timoshenko plate with viscoelastic dissipation of memory type on the boundary. Funkcial. Ekvac. 46, 363–382 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Muñoz Rivera J.E., Lima Santos M.de : Polynomial stability to three-dimensional magnetoelastic waves. Acta Appl. Math. 76, 265–281 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nakao M.: Decay of solutions of the wave equation with a local nonlinear dissipation. Math. Ann. 305, 403–417 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Oliveira J.C., Charào R.C.: Stabilization of a locally damped thermoelastic system. Comput. Appl. Math. 27, 319–357 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Paria G.: On magneto–thermo-elastic plane waves. Proc. Cambr. Phil. Soc. 58, 527–531 (1962)

    Article  MathSciNet  Google Scholar 

  34. Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences. Springer, New York (1983)

    Book  Google Scholar 

  35. Perla Menzala G., Zuazua E.: Energy decay of magnetoelastic waves in a bounded conductive medium. Asymptot. Anal. 18, 349–362 (1998)

    MathSciNet  MATH  Google Scholar 

  36. Pokojovy, M.: On stability of hyperbolic thermoelastic Reissner–Mindlin Timoshenko plates. MMA (to appear). doi:10.1002/mma.3140 (2014)

  37. Purushotham C.M.: Magneto-elastic coupling effects on the propagation of harmonic waves in an electrically conducting elastic plate. Proc. Cambr. Phil. Soc. 63, 503–511 (1967)

    Article  MATH  Google Scholar 

  38. Racke R., Muñoz Rivera J.: Magneto–thermoelasticity, large time behaviour for linear systems. Adv. Differ. Equ. 6, 359–384 (2001)

    MATH  Google Scholar 

  39. Raposo C.A., Ferreira J., Santos M.L., Castro N.N.O.: Exponential stability for the Timoshenko system with two weak dampings. Appl. Math. Lett. 7, 535–541 (2005)

    Article  MathSciNet  Google Scholar 

  40. Reissner E.: On the theory of bending of elastic plates. J. Math. Phys. 23, 184–191 (1944)

    MathSciNet  MATH  Google Scholar 

  41. Santos M.L., Almeida Júnior D.S., Muñoz Rivera J.E.: The stability number of the Timoshenko system with second sound. J. Differ. Equ. 253, 2715–2733 (2013)

    Article  Google Scholar 

  42. Sermange M., Temam R.: Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math. 36, 635–664 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tébou L.R.T.: Well-posedness and energy decay estimates for the damped wave equation with L r localizing coefficient. Comm. Partial Differ. Eqs. 23, 1839–1855 (1998)

    MATH  Google Scholar 

  44. Tébou L.R.T.: Stabilization of the wave equation with localized nonlinear damping. J. Differ. Equ. 145, 502–524 (1998)

    Article  MATH  Google Scholar 

  45. Timoshenko S.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Phil. Mag. 41, 744–746 (1921)

    Article  Google Scholar 

  46. Wehbe A., Youssef W.: Stabilization of the uniform Timoshenko beam by one locally distributed feedback. Appl. Anal. 88, 1067–1078 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Willson A.J.: The propagation of magneto–thermo-elastic plane waves. Proc. Cambr. Phil. Soc. 59, 483–488 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yang J.S.: Equations for elastic plates with partially electroded piezoelectric actuators in flexure with shear deformation and rotary inertia. J. Intell. Mat. Syst. Struct. 8, 444–451 (1997)

    Article  Google Scholar 

  49. Yang J.S.: Equations for elastic plates with partially electroded piezoelectric actuators and higher order electric fields. Smart Mat. Struct. 8, 73–82 (1999)

    Article  Google Scholar 

  50. Yang J.S., Yang X., Turner A., Kopinski J.A., Pastore R.A.: Two-dimensional equations for electrostatic plates with relatively large shear deformations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 765–771 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marié Grobbelaar-Van Dalsen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grobbelaar-Van Dalsen, M. Exponential stabilization of magnetoelastic waves in a Mindlin–Timoshenko plate by localized internal damping. Z. Angew. Math. Phys. 66, 1751–1776 (2015). https://doi.org/10.1007/s00033-015-0507-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0507-0

Mathematics Subject Classification

Keywords

Navigation