Skip to main content
Log in

Implicit constitutive models with a thermodynamic basis: a study of stress concentration

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Motivated by the recent generalization of the class of elastic bodies by Rajagopal (Appl Math 48:279–319, 2003), there have been several recent studies that have been carried out within the context of this new class. Rajagopal and Srinivasa (Proc R Soc Ser A 463:357–367, 2007, Proc R Soc Ser A: Math Phys Eng Sci 465:493–500, 2009) provided a thermodynamic basis for such models and appealing to the idea that rate of entropy production ought to be maximized they developed nonlinear rate equations of the form \({\mathbf{A}\dot{\mathbf{T}}+\mathbf{B}\mathbf{D} = \mathbf{O}}\) where T is the Cauchy stress and D is the stretching tensor as well as \({\mathbf{A}\dot{\mathbf{S}}+\mathbf{B}\dot{\mathbf{E}} = \mathbf{O}}\), where S is the Piola–Kirchhoff stress tensor and E is the Green–St. Venant strain tensor. We follow a similar procedure by utilizing the Gibb’s potential and the left stretch tensor V from the Polar Decomposition of the deformation gradient, and we show that when the displacement gradient is small one arrives at constitutive relations of the form \({\boldsymbol{\varepsilon} = \mathbf{f}(\mathbf{T})}\). This is, of course, in stark contrast to traditional elasticity wherein one obtains a single model, Hooke’s law, when the displacement gradient is small. By solving a classical boundary value problem, with a particular form for f(T), we show that when the stresses are small, the strains are also small which is in agreement with traditional elasticity. However, within the context of our model, when the stress blows up the strains remain small, unlike the implications of Hooke’s law. We use this model to study boundary value problems in annular domains to illustrate its efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rajagopal K.R.: On implicit constitutive theories. Appl. Math. 48, 279–319 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Rajagopal K.R.: The elasticity of elasticity. Zeit. Angew. Math. Phys 58, 309–317 (2007)

    Article  MATH  Google Scholar 

  3. Carroll M.M.: Must elastic materials be hyperelastic?. Math. Mech. Solids 14, 369–376 (2009)

    Article  MATH  Google Scholar 

  4. Green, G.: On the laws of reflexion and refraction of light at the common surface of two non-crystallized media (1837). Trans. Cambr. Phil. Soc. 7, 1–24, Papers 245–269 (1839)

  5. Green, G.: On the propagation of light in crystallized media (1839). Trans. Camb. Phil. Soc. 7 (1839–1842), (1841) 121–140, Papers 293–311

  6. Rajagopal K.R., Srinivasa A.R.: On the response of non-dissipative solids. Proc. R. Soc. Ser. A 463, 357–367 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Rajagopal K.R., Srinivasa A.R.: On a class of non-dissipative materials that are not hyperelastic. Proc. R. Soc. Ser. A: Math. Phys. Eng. Sci. 465, 493–500 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Rajagopal K.R.: Conspectus of concepts of elasticity. Math. Mech. Solids 16, 536–562 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Saito T., Furuta T., Hwang J.H., Kuramoto S., Nishino K., Suzuki N., Chen R., Yamada A., Ito K., Seno Y., Nonaka T., Ikehata H., Nagasako N., Iwamoto C., Ikuhara Y., Sakuma T.: Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300, 464–467 (2003)

    Article  Google Scholar 

  10. Li T., Morris J.W. Jr., Nagasako N., Kuramoto S., Chrzan D.C.: “Ideal” Engineering Alloys. Phys. Rev. Lett. 98, 105503 (2007)

    Article  Google Scholar 

  11. Talling R.J., Dashwood R.J., Jackson M., Kuramoto S., Dye D.: Determination of (C11–C12) in Ti–36Nb–2Ta-3Zr–0.3 O (wt%) (Gum metal). Scripta Mater. 59, 669–672 (2008)

    Article  Google Scholar 

  12. Withey E., Jin M., Minor A., Kuramoto S., Chrzan D.C., Morris J.W. Jr.: The deformation of “Gum Metal” in nanoindentation. Mater. Sci. Eng. A 493, 26 (2008)

    Article  Google Scholar 

  13. Zhang S.Q., Li S.J., Jia M.T., Hao Y.L., Yang R.: Fatigue properties of a multifunctional titanium alloy exhibiting nonlinear elastic deformation behavior. Scripta Mater. 60, 733–736 (2009)

    Article  Google Scholar 

  14. Rajagopal, K.R.: On the non-linear response of bodies in the small strain range. Acta Mech. (2013). doi:10.1007/s00707-013-1015-y

  15. Penn R.W.: Volume changes accompanying the extension of rubber. J. Rheol. 14, 509–517 (1970)

    Article  Google Scholar 

  16. Criscione J.C., Rajagopal K.R.: On modeling the response of soft elastic bodies. Int. J. Nonlinear Mech. 56, 20–24 (2013)

    Article  Google Scholar 

  17. Rajagopal K.R., Walton J.: Modeling fracture in the context of a strain-limiting theory of elasticity: a single anti-plane shear crack. Int. J. Frac. 169, 39–48 (2011)

    Article  MATH  Google Scholar 

  18. Kulvait, V., Malek, J., Rajagopal, K.R.: Anti-plane stress state of a plate with a V-notch for a new class of elastic solids. Int. J. Fract. 179, 59–73 (2013)

    Google Scholar 

  19. Ortiz A., Bustamante R., Rajagopal K.R.: A numerical study of a plate with a hole for a new class of elastic bodies. Acta Mech. 223, 1971–1981 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ortiz, A., Bustamante, R., Rajagopal, K.R.: A numerical study of elastic bodies that are described by constitutive equations that exhibit limited strain. Int. J. Solids Struct. 51, 875–885 (2014)

    Google Scholar 

  21. Gou, K., Mallikarjuna, M., Rajagopal, K.R., Walton, J.: Modeling fracture in the context of a strain limiting theory in elasticity. Int. J. Eng. Sci. to appear (2014)

  22. Bustamante R.: Some topics on a new class of elastic bodies. Proc. R. Soc. Ser. A 465, 1377–1392 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Bustamante R., Rajagopal K.R.: Solutions of some simple boundary value problems within the context of a new class of elastic materials. Int. J. Nonlinear Mech. 46, 376–386 (2011)

    Article  Google Scholar 

  24. Bustamante R., Rajagopal K.R.: On the inhomogeneous shearing of a new class of elastic bodies. Math. Mech. Solids 17, 762–778 (2012)

    Article  MathSciNet  Google Scholar 

  25. Bustamante R., Rajagopal K.R.: On a new class of electroelastic bodies. Part I. Proc. R. Soc. Lond. Ser. A 469(2149), 20120521 (2013)

    Article  MathSciNet  Google Scholar 

  26. Bustamante, R., Rajagopal, K.R.: A new class of electroelastic bodies. Part II. Boundary value problems. Proc. R. Soc. Lond. Ser. A (2155), 20130106 (2013)

  27. Rajagopal K.R.: On a new class of models in elasticity. Math. Comput. App. 15, 500–528 (2010)

    Google Scholar 

  28. Rajagopal K.R.: Non-linear elastic bodies exhibiting limiting small strain. Math. Mech. Solids 16, 122–139 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kambapalli, M., Kannan, K., Rajagopal, K.R.: Circumferential stress waves in a non-linear elastic cylinder. Q. J. Mech. Appl. Math. (accepted)

  30. Kannan, K., Rajagopal, K.R., Saccomandi, G.: Unsteady motion of a new class of elastic bodies. Wave Motion (accepted)

  31. Freed A.D., Einstein D.R.: An implicit elastic theory for lung parenchyma. Int. J. Eng. Sci. 62, 31–47 (2013)

    Article  MathSciNet  Google Scholar 

  32. Freed, A.D., Liao, J., Einstein, D.R.: A membrane model from implicit elasticity theory: application to visceral pleura. Biomech. Model. Mechanobiol. (2013). doi:10.1007/s10237-013-0542-8

  33. Inglis C.E.: Stresses in a plate due to the presence of cracks and sharp corners. Trans. Inst. Nav. Archit. 55, 219–241 (1913)

    Google Scholar 

  34. Farina A., Fasano A., Fusi L., Rajagopal K.R.: Modeling materials with a stretching threshold. Math. Models Methods Appl. Sci. 17, 1799–1847 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  35. Ramberg, W., Osgood, W.R.: Description of stress–strain curves by three parameters. National Advisory Committee for Aeronautics, 902 (1943)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Rajagopal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bridges, C., Rajagopal, K.R. Implicit constitutive models with a thermodynamic basis: a study of stress concentration. Z. Angew. Math. Phys. 66, 191–208 (2015). https://doi.org/10.1007/s00033-014-0398-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0398-5

Mathematics Subject Classification

Keywords

Navigation