Skip to main content
Log in

Polynomial decay rate of a thermoelastic Mindlin–Timoshenko plate model with Dirichlet boundary conditions

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this article, we are concerned with the polynomial stabilization of a two-dimensional thermoelastic Mindlin–Timoshenko plate model with no mechanical damping. The model is subject to Dirichlet boundary conditions on the elastic as well as the thermal variables. The work complements our earlier work in Grobbelaar-Van Dalsen (Z Angew Math Phys 64:1305–1325, 2013) on the polynomial stabilization of a Mindlin–Timoshenko model in a radially symmetric domain under Dirichlet boundary conditions on the displacement and thermal variables and free boundary conditions on the shear angle variables. In particular, our aim is to investigate the effect of the Dirichlet boundary conditions on all the variables on the polynomial decay rate of the model. By once more applying a frequency domain method in which we make critical use of an inequality for the trace of Sobolev functions on the boundary of a bounded, open connected set \({\Omega \subset \mathbb{R}^n, n \geq 2,}\) we show that the decay is slower than in the model considered in the cited work. A comparison of our result with our polynomial decay result for a magnetoelastic Mindlin–Timoshenko model subject to Dirichlet boundary conditions on the elastic variables in Grobbelaar-Van Dalsen (Z Angew Math Phys 63:1047–1065, 2012) also indicates a correlation between the robustness of the coupling between parabolic and hyperbolic dynamics and the polynomial decay rate in the two models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auchmuty, G.: Sharp boundary trace inequalities. Proc. R. Soc. Edinb. Sect. A (in press)

  2. Avalos G., Lasiecka I.: Exponential stability of a thermoelastic system without mechanical dissipation. Rend. Istit. Mat. Univ. Trieste 27, 1–28 (1997)

    MathSciNet  Google Scholar 

  3. Avalos, G., Lasiecka, I., Triggiani, R.: Uniform stability of nonlinear thermoelastic plates with free boundary conditions. International Series of Numerical Mathematics, vol. 133. Birkhäuser Verlag, Basel/Switzerland (1999)

  4. Avalos G., Triggiani R.: Rational decay rates for a PDE heat-structure interaction: a frequency domain approach. Evol. Equ. Control Theory 2, 233–253 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Benabdallah A., Lasiecka I.: Exponential decay rates for a full Von Kármán system of dynamic thermoelasticity. J. Differ. Equ. 160, 51–93 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Benchimol C.D.: A note on weak stabilization of contraction semigroups. SIAM J. Control Optim. 16, 373–379 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  7. Borichev A., Tomilov Y.: Optimal polynomial decay rate of functions and operator semigroups. Math. Ann. 347, 455–478 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cattaneo C.: Sulla conduzione del calore. Atti. Sem. Mat. Fis. Univ. Modena 3, 83–101 (1948)

    MathSciNet  Google Scholar 

  9. Chandrasekhariah D.S.: Hyperbolic thermoelasticity. Appl. Mech. Rev. 51, 705–729 (1998)

    Article  Google Scholar 

  10. Dafermos C.M.: On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity. Arch. Ration. Mech. Anal. 29, 241–271 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fernández Sare H.D., Racke R.: On the stability of damped Timoshenko systems—Cattaneo versus Fourier’s law. Arch. Ration. Mech. Anal. 194, 221–251 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Green A.E., Naghdi P.M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. Ser. A 432, 171–194 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Green A.E., Naghdi P.M.: On undamped heat waves in an elastic solid. J. Thermal Stress. 15, 253–264 (1992)

    Article  MathSciNet  Google Scholar 

  14. Green A.E., Naghdi P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Grisvard P.: Elliptic Problems in Nonsmooth Domains. Pitman, Massachusetts (1985)

    MATH  Google Scholar 

  16. Grobbelaar-Van Dalsen M.: Strong stabilization of models incorporating the thermoelastic Reissner–Mindlin plate equations with second sound. Appl. Anal. 90, 1419–1449 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Grobbelaar-Van Dalsen M.: On the dissipative effect of a magnetic field in a Mindlin–Timoshenko plate model. Z. Angew. Math. Phys. 63, 1047–1065 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Grobbelaar-Van Dalsen M.: Stabilization of a thermoelastic Mindlin–Timoshenko plate model revisited. Z. Angew. Math. Phys. 64, 1305–1325 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Irmscher, T.: Aspekte Hyperbolischer Thermoelastizität, Dissertation, Fachbe–reich Mathematik und Statistik. Universität Konstanz (2006)

  20. Jiang, S., Racke, R.: Evolution Equations in Thermoelasticity. Monographs and Surveys in Pure and Applied Mathematics. Chapman & Hall/CRC, London (2000)

  21. Lagnese J.: Boundary Stabilization of Thin Plates, SIAM Studies in Applied Mathematics. SIAM, Philadelphia (1989)

    Book  Google Scholar 

  22. Lasiecka I., Triggiani R.: Exact controllability of the wave equation with Neumann boundary control. Appl. Math. Optim. 19, 243–290 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lasiecka I., Triggiani R.: Analyticity of thermo-elastic semigroups with free boundary conditions. Ann. Scuola. Norm. Sup. Pisa 27, 457–482 (1998)

    MATH  MathSciNet  Google Scholar 

  24. Lasiecka I.: Uniform decay rates for full Von Kármán system of dynamic thermoelasticity with free boundary conditions and partial boundary dissipation. Commun. Partial Differ. Equ. 24(9&10), 1801–1847 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lebeau G., Zuazua E.: Decay rates for the three-dimensional linear system of thermoelasticity. Arch. Ration. Mech. Anal. 148, 179–231 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Liu Z., Rao B.: Characterization of polynomial decay rates for the solution of linear evolution equation. Z. Angew. Math. Phys. 56, 630–644 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Liu Z., Rao B.: Energy decay rate of the thermoelastic Bresse system. Z. Angew. Math. Phys. 60, 54–69 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Messaoudi S.A., Said-Houari B.: Energy decay in a Timoshenko-type system of thermoelasticity of type III. J. Math. Anal. Appl. 348, 298–307 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Messaoudi S.A., Pokojovy M., Said-Houari B.: Nonlinear damped Timoshenko systems with second sound—global existence and exponential stability. Math. Methods Appl. Sci. 32, 505–534 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Mindlin R.D.: Thickness-shear and flexural vibrations of crystal plates. J. Appl. Phys. 22, 316–323 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  31. Muñoz Rivera J.E., Racke R.: Polynomial stability in two-dimensional magneto-elasticity. IMA J. Appl. Math. 66, 359–384 (2001)

    Article  Google Scholar 

  32. Muñoz Rivera J.E., Racke R.: Mildly dissipative nonlinear Timoshenko systems—global existence and exponential stability. J. Math. Anal. Appl. 276, 248–278 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  33. Muñoz Rivera J.E., de Lima Santos M.: Polynomial stability to three-dimensional magnetoelastic waves. Acta Appl. Math. 76, 265–281 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Nicaise S.: Internal stabilization of a Mindlin–Timoshenko model by interior feedbacks. Math. Control Relat. Fields 1, 331–352 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  35. Pazy A.: Semigroups of linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences 44. Springer, New York (1983)

    Book  Google Scholar 

  36. Racke R.: Asymptotic behaviour of solutions in linear 2- or 3-d thermoelasticity with second sound. Q. Appl. Math. 61, 315–328 (2003)

    MATH  MathSciNet  Google Scholar 

  37. Said-Houari B., Rahali R.: Asymptotic behaviour of the solution to the Cauchy problem for the Timoshenko system in thermoelasticity of Type III. Evol. Equ. Control Theory 2, 423–440 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  38. Said-Houari, B., Kasimov, A.: Decay property of Timoshenko system in thermoelasticity. Math. Methods Appl. Sci. doi:10.1002/mma:1569

  39. Santos M.L., Almeida Júnior D.S., Muñoz Rivera J.E.: The stability number of the Timoshenko system with second sound. J. Differ. Equ. 253, 2715–2733 (2012)

    Article  MATH  Google Scholar 

  40. Straughan B.: Heat Waves, Applied Mathematical Sciences, vol. 177. Springer, New York (2011)

    Google Scholar 

  41. Timoshenko S.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. 41, 744–746 (1921)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marié Grobbelaar-Van Dalsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grobbelaar-Van Dalsen, M. Polynomial decay rate of a thermoelastic Mindlin–Timoshenko plate model with Dirichlet boundary conditions. Z. Angew. Math. Phys. 66, 113–128 (2015). https://doi.org/10.1007/s00033-013-0391-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-013-0391-4

Mathematics Subject Classification (2010)

Keywords

Navigation