Skip to main content
Log in

Optimal energy scaling for a shear experiment in single-crystal plasticity with cross-hardening

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Consideration is given to a non-convex variational model for a shear experiment in the framework of single-crystal linearised plasticity with infinite cross-hardening. The rectangular shear sample is clamped at each end and is subjected to a prescribed horizontal or diagonal shear, modelled by an appropriate hard Dirichlet condition. We ask ‘How much energy is required to impose such a shear?’ and ‘How does it depend on the aspect ratio?’ Assuming that just two slip systems are active, we show that there is a critical aspect ratio, above which the energy is strictly positive, and below which it is zero. Furthermore, in the respective regimes determined by the aspect ratio, we prove energy-scaling bounds, expressed in terms of the amount of prescribed shear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conti S., Dolzmann G., Kreisbeck C.: Relaxation of a model in finite plasticity with two slip systems. Math. Models Methods Appl. Sci. 23, 2111–2128 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Conti S., Dolzmann G., Klust C.: Relaxation of a class of variational models in crystal plasticity. Proc. R. Soc. A 465, 1735–1742 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wu T.Y., Bassani J.L., Laird C.: Latent hardening in single crystals I. Theory and experiments. Proc. R. Soc. A 435, 1–19 (1991)

    Article  MATH  Google Scholar 

  4. Kocks U.F.: Latent hardening and secondary slip in aluminum and silver. Trans. Metall. Soc. AIME 230, 1160–1167 (1964)

    Google Scholar 

  5. Franciosi P., Zaoui A.: Multislip in f.c.c. crystals a theoretical approach compared with experimental data. Acta Metall. 30, 1627–1637 (1982)

    Article  Google Scholar 

  6. Ortiz M., Repetto E.A.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47, 397–462 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Rasmussen K., Pedersen O.: Fatigue of copper polycrystals at low plastic strain amplitudes. Acta Metall. 28, 1467–1478 (1980)

    Article  Google Scholar 

  8. Jin N., Winter T.: Cyclic deformation of copper single crystals oriented for double slip. Acta Metall. 32, 989–995 (1984)

    Article  Google Scholar 

  9. Bay B., Hansen N., Hughes D.A., Kuhlmann-Wilsdorf D.: Evolution of f.c.c. deformation structures in polyslip. Acta Metall. Mater. 40, 205–219 (1992)

    Article  Google Scholar 

  10. Dondl P.W., Dmitrieva O., Müller S., Raabe D.: Lamination microstructure in shear deformed copper single crystals. Acta Mater. 57, 3439–3449 (2009)

    Article  Google Scholar 

  11. Mielke A., Müller S.: Lower semicontinuity and existence of minimizers in incremental finite-strain elastoplasticity. Z. Angew. Math. Mech. 86, 233–250 (2006)

    Article  MATH  Google Scholar 

  12. Svendsen B.: Continuum thermodynamic models for crystal plasticity including the effects of geometrically necessary dislocations. J. Mech. Phys. Solids 50, 1297–1329 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cermelli P., Gurtin M.E.: On the characterization of geometrically necessary dislocations in finite plasticity. J. Mech. Phys. Solids 49, 1539–1568 (2001)

    Article  MATH  Google Scholar 

  14. Cao G.H., Becker A.T., Wu D., Chumbley L.S., Lograsso T.A., Russell A.M., Gschneidner K.A. Jr: Mechanical properties and determination of slip systems of the B2 YZn intermetallic compound. Acta Mater. 58, 4298–4304 (2010)

    Article  Google Scholar 

  15. Conti S., Ortiz M.: Dislocation microstructures and the effective behaviour of single crystals. Arch. Rat. Mech. Anal. 176, 103–147 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Taylor M.: Partial differential equations I. Springer, Heidelberg (1996)

    Book  Google Scholar 

  17. Garroni A., Leoni G., Ponsiglione M.: Gradient theory of plasticity via homogenization of discrete dislocations. J. Eur. Math. Soc. 12, 1231–1266 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Neff, P., Pauly, D., Witsch, K.-J.: Poincaré meets Korn via Maxwell: Extending Korn’s First Inequality to Incompatible Tensor Fields. Preprint, 2013 [arXiv:1203.2744]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith Anguige.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anguige, K., Dondl, P. Optimal energy scaling for a shear experiment in single-crystal plasticity with cross-hardening. Z. Angew. Math. Phys. 65, 1011–1030 (2014). https://doi.org/10.1007/s00033-013-0379-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-013-0379-0

Mathematics Subject Classification

Keywords

Navigation