Skip to main content
Log in

Instability of the magnetohydrodynamics system at vanishing Reynolds number

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The aim of this note is to study the dynamo properties of the magnetohydrodynamics system at vanishing R m . Improving the analysis in Gérard-Varet (SIAM J Math Anal 37(3):815–840, 2006), we shall establish a generic Lyapunov instability result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexakis A.: Searching for the fastest dynamo: Laminar ABC flows. Phys. Rev. E 84(2), 026321 (2011)

    Article  Google Scholar 

  2. Bouya, I.: Instability of the Magnetohydrodynamics System at Small but Finite Reynolds Number. SIAM J. Math. Anal. (2012, accepted)

  3. Fauve S., Petrelis F.: The dynamo effect. Peyresq Lect. Nonlinear Phenom. 2, 1–64 (2003)

    Article  Google Scholar 

  4. Friedlander S., Pavlović N., Shvydkoy R.: Nonlinear instability for the Navier–Stokes equations. Commun. Math. Phys. 264(2), 335–347 (2006)

    Article  MATH  Google Scholar 

  5. Friedlander, S., Strauss, W., Vishik, M.M.: Nonlinear instability in an ideal fluid. In: Annales de l’Institut Henri Poincare/Analyse Non lineaire, volume 14, pp. 187–209. Elsevier, Amsterdam (1997)

  6. Gérard-Varet D.: Oscillating solutions of incompressible magnetohydrodynamics and dynamo effect. SIAM J. Math. Anal. 37(3), 815–840 (2006)

    Article  Google Scholar 

  7. Gilbert A.D.: Dynamo theory. Handb. Math. Fluid Dyn. 2(1), 355–441 (2003)

    Article  Google Scholar 

  8. Guo, Y., Strauss, W.: Nonlinear instability of double-humped equilibria. In: Annales de l’Institut Henri Poincaré. Analyse non linéaire, volume 12, pp. 339–352. Elsevier, Amsterdam (1995)

  9. Larmor, J.: How could a rotating body such as the sun become a magnet. Rep. Brit. Assoc. Adv. Sci. 159, 412 (1919)

    Google Scholar 

  10. Otani N.: A fast kinematic dynamo in two-dimensional time-dependent flows. J. Fluid Mech. 253, 327–340 (1993)

    Article  MATH  Google Scholar 

  11. Parker E.N.: Hydromagnetic dynamo models. Astrophys. J. 122, 293–314 (1955)

    Article  MathSciNet  Google Scholar 

  12. Soward A.: On the role of stagnation points and periodic particle paths in a two-dimensional pulsed flow fast dynamo model. Physica D: Nonlinear Phenom. 76(1–3), 181–201 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Soward A.M.: Fast dynamo action in a steady flow. J. Fluid Mech. 180, 267–295 (1987)

    Article  MATH  Google Scholar 

  14. Stieglitz R., Müller U.: Experimental demonstration of a homogeneous two-scale dynamo. Phys. Fluids 13, 561 (2001)

    Article  Google Scholar 

  15. Temam R.: Navier–Stokes Equations: Theory and Numerical Analysis. American Mathematical Society, Providence (2001)

    Google Scholar 

  16. Vishik M.M.: Magnetic field generation by the motion of a highly conducting fluid. Geophys. Astrophys. Fluid Dyn. 48(1), 151–167 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismaël Bouya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouya, I. Instability of the magnetohydrodynamics system at vanishing Reynolds number. Z. Angew. Math. Phys. 64, 1689–1698 (2013). https://doi.org/10.1007/s00033-013-0309-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-013-0309-1

Mathematics Subject Classification

Navigation