Skip to main content
Log in

A geometric analysis of front propagation in a family of degenerate reaction-diffusion equations with cutoff

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We investigate the effects of a Heaviside cutoff on the dynamics of traveling fronts in a family of scalar reaction-diffusion equations with degenerate polynomial potential that includes the classical Zeldovich equation. We prove the existence and uniqueness of front solutions in the presence of the cutoff, and we derive the leading-order asymptotics of the corresponding propagation speed in terms of the cutoff parameter. For the Zeldovich equation, an explicit solution to the equation without cutoff is known, which allows us to calculate higher-order terms in the resulting expansion for the front speed; in particular, we prove the occurrence of logarithmic (switchback) terms in that case. Our analysis relies on geometric methods from dynamical systems theory and, in particular, on the desingularization technique known as ‘blow-up.’

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M.A., Stegun, I.A. (eds): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Ninth printing. Dover Publications, New York (1974)

    Google Scholar 

  2. Amann, H.: Ordinary differential equations. An introduction to nonlinear analysis. Translated from the German by Gerhard Metzen. de Gruyter Studies in Mathematics, vol. 13. Walter de Gruyter, Berlin (1990)

  3. Aronson D.G.: Density-dependent Interaction Systems. In: Stewart, W.E., Ray, W.H., Conley, C.C. (eds) Dynamics and Modeling of Reactive Systems, pp. 161–176. Academic Press, New York (1980)

    Google Scholar 

  4. Aronson, D.G., Weinberger, H.F.: Nonlinear Diffusion in Population Genetics, Combustion, and Nerve Pulse Propagation. In: Partial Differential Equations and Related Topics, Tulane University, New Orleans, LA, 1974, Lecture Notes in Mathematics, vol. 446, pp. 5–49. Springer, Berlin (1975)

  5. Benguria R.D., Depassier M.C.: Variational principle for the asymptotic speed of fronts of the density-dependent diffusion-reaction equation. Phys. Rev. E 52(3), 3285–3287 (1995)

    Article  MathSciNet  Google Scholar 

  6. Benguria R.D., Depassier M.C.: Speed of Fronts of the Reaction-Diffusion Equation. Phys. Rev. Lett. 77(6), 1171–1173 (1996)

    Article  Google Scholar 

  7. Benguria R.D., Depassier M.C.: Speed of pulled fronts with cutoff. Phys. Rev. E 75(5), 051106 (2007)

    Article  Google Scholar 

  8. Benguria R.D., Depassier M.C., Haikala V.: Effect of a cutoff on pushed and bistable fronts of the reaction-diffusion equation. Phys. Rev. E 76(5), 051101 (2007)

    Article  Google Scholar 

  9. Billingham J., Needham D.J.: A note on the properties of a family of travelling-wave solutions arising in cubic autocatalysis. Dyn. Stab. Syst. 6(1), 33–49 (1991)

    MathSciNet  MATH  Google Scholar 

  10. Billingham J.: Phase plane analysis of one-dimensional reaction-diffusion waves with degenerate reaction terms. Dyn. Stab. Syst. 15(1), 23–33 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Britton N.F.: Reaction-Diffusion Equations and Their Applications to Biology. Academic Press, London (1986)

    MATH  Google Scholar 

  12. Brunet E., Derrida B.: Shift in the velocity of a front due to a cutoff. Phys. Rev. E 56(3), 2597–2604 (1997)

    Article  MathSciNet  Google Scholar 

  13. De Maesschalck, P.: Personal communication (2009)

  14. Dumortier F.: Techniques in the Theory of Local Bifurcations: Blow-Up, Normal Forms, Nilpotent Bifurcations, Singular Perturbations. In: Schlomiuk, D. (ed.) Bifurcations and Periodic Orbits of Vector Fields, NATO ASI Series C vol. 408, pp. 19–73. Kluwer, Dordrecht, The Netherlands (1993)

    Google Scholar 

  15. Dumortier F., Llibre J., Artés J.C.: Qualitative theory of planar differential systems. Universitext, Springer, Berlin (2006)

    MATH  Google Scholar 

  16. Dumortier F., Popović N., Kaper T.J.: The asymptotic critical wave speed in a family of scalar reaction-diffusion equations. J. Math. Anal. Appl. 326(2), 1007–1023 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dumortier F., Popović N., Kaper T.J.: The critical wave speed for the FKPP equation with cut-off. Nonlinearity 20(4), 855–877 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dumortier F., Popović N., Kaper T.J.: A geometric approach to bistable front propagation in scalar reaction-diffusion equations with cut-off. Phys. D 239(20), 1984–1999 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dumortier, F., Popović, N., Kaper, T.J.: Wave speeds for pushed fronts in reaction-diffusion equations with cut-offs, in preparation (2010)

  20. Fisher R.A.: The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937)

    Article  Google Scholar 

  21. Gilding, B.H., Kersner, R.: Travelling waves in nonlinear diffusion-convection reaction. Progress in Nonlinear Differential Equations and their Applications, vol. 60. Birkhäuser, Basel (2004)

  22. van Gils S., Krupa M., Szmolyan P.: Asymptotic expansions using blow-up. Z. Angew. Math. Phys. 56(3), 369–397 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hirsch, M.W., Pugh, C.C., Shub, M.: Invariant Manifolds. Lecture Notes in Mathematics, vol. 583. Springer, Berlin (1977)

  24. Kessler D.A., Ner Z., Sander L.M.: Front propagation: precursors, cutoffs, and structural stability. Phys. Rev. E 58(1), 107–114 (1998)

    Article  Google Scholar 

  25. King A.C., Needham D.J.: The effects of variable diffusivity on the development of travelling waves in a class of reaction-diffusion equations. Philos. Trans. Roy. Soc. Lond. Ser. A 348(1687), 229–260 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kolmogorov A.N., Petrowskii I.G., Piscounov N.: Etude de l’équation de la diffusion avec croissance de la quantité de matiére et son application à un problème biologique. Moscow Univ. Math. Bull. 1, 1–25 (1937)

    Google Scholar 

  27. Krupa M., Szmolyan P.: Extending geometric singular perturbation theory to nonhyperbolic points—fold and canard points in two dimensions. SIAM J. Math. Anal. 33(2), 286–314 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lagerstrom P.A.: Matched Asymptotic Expansions. Ideas and Techniques. Applied Mathematical Sciences vol. 76. Springer, New York (1988)

    Google Scholar 

  29. Méndez V., Campos D., Zemskov E.P.: Variational principles and the shift in the front speed due to a cutoff. Phys. Rev. E 72(5), 056113 (2005)

    Article  MathSciNet  Google Scholar 

  30. Merkin J.H., Needham D.J.: Reaction-diffusion waves in an isothermal chemical system with general orders of autocatalysis and spatial dimension. Z. Angew. Math. Phys. 44(4), 707–721 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Needham D.J., Barnes A.N.: Reaction-diffusion and phase waves occurring in a class of scalar reaction-diffusion equations. Nonlinearity 12(1), 41–58 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Panja D.: Effects of fluctuations on propagating fronts. Phys. Rep. 393, 87–174 (2004)

    Article  Google Scholar 

  33. Popović, N.: A geometric analysis of logarithmic switchback phenomena. In: HAMSA 2004: Proceedings of the International Workshop on Hysteresis and Multi-Scale Asymptotics, Cork 2004, J. Phys. Conference Series, vol. 22, pp. 164–173 (2005)

  34. Popović, N.: Front speeds, cut-offs, and desingularization: a brief case study. In: Fluids and waves, Contemp. Math. vol. 440, pp. 187–195, Am. Math. Soc., Providence, RI (2007)

  35. Popović N., Kaper T.J.: Rigorous asymptotic expansions for critical wave speeds in a family of scalar reaction-diffusion equations. J. Dyn. Differ. Equ. 18(1), 103–139 (2006)

    Article  MATH  Google Scholar 

  36. Popović N., Szmolyan P.: Rigorous asymptotic expansions for Lagerstrom’s model equation—a geometric approach. Nonlinear Anal. 59(4), 531–565 (2004)

    MathSciNet  MATH  Google Scholar 

  37. van Saarlos W.: Front propagation into unstable states. Phys. Rep. 386, 29–222 (2003)

    Article  Google Scholar 

  38. Sánchez-Garduño F., Maini P.K.: Travelling wave phenomena in some degenerate reaction-diffusion equations. J. Differ. Equ. 117(2), 281–319 (1995)

    Article  MATH  Google Scholar 

  39. Sherratt J.A., Marchant B.P.: Algebraic decay and variable speeds in wavefront solutions of a scalar reaction-diffusion equation. IMA J. Appl. Math. 56(3), 289–302 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. Witelski T.P., Ono K., Kaper T.J.: Critical wave speeds for a family of scalar reaction-diffusion equations. Appl. Math. Lett. 14(1), 65–73 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola Popović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popović, N. A geometric analysis of front propagation in a family of degenerate reaction-diffusion equations with cutoff. Z. Angew. Math. Phys. 62, 405–437 (2011). https://doi.org/10.1007/s00033-011-0115-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-011-0115-6

Mathematics Subject Classification (2000)

Keywords

Navigation