Skip to main content
Log in

Longtime behavior of the hyperbolic equations with an arbitrary internal damping

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper is devoted to a study of the longtime behavior of the hyperbolic equations with an arbitrary internal damping, under sharp regularity assumptions that both the principal part coefficients and the boundary of the space domain (in which the system evolves) are continuously differentiable. For this purpose, we derive a new point-wise inequality for second differential operators with symmetric coefficients. Then, based on a global Carleman estimate, we establish an estimate on the underlying resolvent operator of the equation, via which, we show the logarithmic decay rate for solutions of the hyperbolic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammari K.: Dirichlet boundary stabilization of the wave equation. Asymptot. Anal. 30, 117–130 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Burq N.: Décroissance de l’énergie locale de l’équation des ondes pour le probléme extérieur et absence de résonance au voisinagage du réel. Acta Math. 180, 1–29 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Batty C.J.K., Duyckaerts T.: Non-uniform stability for bounded semi-groups on Banach spaces. J. Evol. Equ. 8, 765–780 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burq N., Hitrik M.: Energy decay for damped wave equations on partially rectangular domains. Math. Res. Lett. 14, 35–47 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Bardos C., Lebeau G., Rauch J.: Sharp sufficient conditions for the observation, control and stabilization from the boundary. SIAM J. Control Optim. 30, 1024–1165 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Christianson, H.: Applications of cutoff resolvent estimates to the wave equations, Preprint (see http://arxiv.org/pdf/0709.0555)

  7. Chen G., Fulling S.A., Narcowich F.J., Sun S.: Exponential decay of energy of evolution equations with locally distributed damping. SIAM J. Appl. Math. 51, 266–301 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duyckaerts T.: Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface. Asymptot. Anal. 51, 17–45 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Duyckaerts T., Zhang X., Zuazua E.: On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 25, 1–41 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fu X.: A weighted identity for partial differential operators of second order and its applications. C. R. Math. Acad. Sci. Paris 342, 579–584 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Fu X.: Logarithmic decay of hyperbolic equations with arbitrary small boundary damping. Comm. Partial Differ. Equ. 34, 957–975 (2009)

    Article  MATH  Google Scholar 

  12. Fu X.: Null controllability for the parabolic equation with a complex principal part. J. Funct. Anal. 257, 1333–1354 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fu X., Yong J., Zhang X.: Exact controllability for the multidimensional semilinear hyperbolic equations. SIAM J. Control Optim. 46, 1578–1614 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fursikov A.V., Imanuvilov O.Y.: Controllability of evolution equations, Lecture notes series 34. Research Institute of Mathematics, Seoul National University, Seoul, Korea (1994)

    Google Scholar 

  15. Haraux A.: Systèmes Dynamiques Dissipatifs et Applications. Masson, Paris (1991)

    MATH  Google Scholar 

  16. Komornik V.: Decay estimates for the wave equation with internal damping. Internat. Ser. Numer. Math. 118, 253–266 (1994)

    MathSciNet  Google Scholar 

  17. Lavrentév, M.M., Romanov, V.G., Shishat·skii, S.P.: Ill-posed Problems of Mathematical Physics and Analysis, Translated from the Russian by J. R. Schulenberger, Translations of Mathematical Monographs, 64, American Mathematical Society, Providence, RI (1986)

  18. Lebeau G., Robbiano L.: Stabilisation de l’équation des ondes par le bord. Duke Math. J. 86, 465–491 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu Z., Rao B.: Characterization of polynomial decay rate for the solution of linear evolution equation. Z. Angew. Math. Phys. 56, 630–644 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu X., Zhang X.: Local controllability of multidimensional quasilinear parabolic equations. C. R. Math. Acad. Sci. Paris 347, 1379–1384 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Martinez P.: Decay of solutions of the wave equation with a local highly degenerate dissipation. Asymptot. Anal. 19, 1–17 (1999)

    MathSciNet  MATH  Google Scholar 

  22. Phung K.-D.: Polynomial decay rate for the dissipative wave equation. J. Differ. Equ. 240, 92–124 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Phung K.-D.: Boundary stabilization for the wave equation in a bounded cylindrical domain. Discrete Contin. Dynam. Syst. 20, 1057–1093 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Phung K.-D., Zhang X.: Time reversal focusing of the initial state for Kirchoff plate. SIAM J. Appl. Math. 68, 1535–1556 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rauch J., Zhang X., Zuazua E.: Polynomial decay of a hyperbolic-parabolic coupled system. J. Math. Pures Appl. 84, 407–470 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tchéugoue Tébou L.R.: Stabilization of the wave equation with localized non-linear damping. J. Differ. Equ. 145, 502–524 (1998)

    Article  MATH  Google Scholar 

  27. Wang G., Wang L.: The Carleman inequality and its application to periodic optimal control governed by semilinear parabolic differential equations. J. Optim. Theory Appl. 118, 249–461 (2003)

    Article  Google Scholar 

  28. Zhang X.: Explicit observability estimate for the wave equation with potential and its application. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 456, 1101–1115 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang X., Zuazua E.: Long time behavior of a coupled heat-wave system arising in fluid-structure interaction. Arch. Rat. Mech. Anal. 184, 49–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zuazua E.: Exponential decay for the semilinear wave equation with locally distributed damping. Comm. Partial Differ. Equ. 15, 205–235 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyu Fu.

Additional information

This work is partially supported by the NSF of China under grant 10901114, the Doctoral Fund for New Teachers of Ministry of Education of China under grant 20090181120084, and the National Basic Research Program of China (973 program) under grant 2011CB808002. The author gratefully acknowledges Professor Xu Zhang for his help.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, X. Longtime behavior of the hyperbolic equations with an arbitrary internal damping. Z. Angew. Math. Phys. 62, 667–680 (2011). https://doi.org/10.1007/s00033-010-0113-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-010-0113-0

Mathematics Subject Classification (2000)

Keywords

Navigation