Skip to main content
Log in

Leray–Lions Equations of (pq)-Type in the Entire Space with Unbounded Potentials

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper we prove the existence of signed bounded solutions for a quasilinear elliptic equation in \({\mathbb {R}}^N\) driven by a Leray–Lions operator of (pq)–type in presence of unbounded potentials. A direct approach seems to be a hard task, and for this reason we will study approximating problems in bounded domains, whose resolutions needs refined tools from nonlinear analysis. In particular, we will use a weaker version of the classical Cerami–Palais–Smale condition together with a extension of the Weierstrass Theorem due to Candela–Palmieri, as well as a generalization of a celebrated convergence result by Boccardo–Murat–Puel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Wang, Z.Q.: Nonlinear Schrodinger equations with vanishing and decaying potentials. Differ. Integral Equ. 18, 1321–1332 (2005)

    MathSciNet  Google Scholar 

  2. Arcoya, D., Boccardo, L.: Critical points for multiple integrals of the calculus of variations. Arch. Ration. Mech. Anal. 134, 249–274 (1996)

    Article  MathSciNet  Google Scholar 

  3. Benci, V., d’Avenia, P., Fortunato, D., Pisani, L.: Solitons in several space dimensions: Derricks problem and infinitely many solutions. Arch. Ration. Mech. Anal. 154, 297–324 (2000)

    Article  MathSciNet  Google Scholar 

  4. Benci, V., Fortunato, D.: Discreteness conditions of the spectrum of Schrödinger operators. J. Math. Anal. Appl. 64, 695–700 (1978)

    Article  MathSciNet  Google Scholar 

  5. Biagi, S., Dipierro, S., Valdinoci, E., Vecchi, E.: Mixed local and nonlocal elliptic operators: regularity and maximum principles. Commun. Partial Differ. Equ. 47, 585–629 (2022)

    Article  MathSciNet  Google Scholar 

  6. Biagi, S., Mugnai, D., Vecchi, E.: A Brezis–Oswald approach for mixed local and nonlocal operators. Commun. Contemp. Math. (2022). https://doi.org/10.1142/S0219199722500572

    Article  Google Scholar 

  7. Biagi, S., Mugnai, D., Vecchi, E.: Necessary condition in a Brezis–Oswald-type problem for mixed local and nonlocal operators. Appl. Math. Lett. 132, 108177 (2022)

    Article  MathSciNet  Google Scholar 

  8. Boccardo, L., Murat, F.: Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonlinear Anal. 19, 581–597 (1992)

    Article  MathSciNet  Google Scholar 

  9. Boccardo, L., Murat, F., Puel, J.P.: Existence of bounded solutions for nonlinear elliptic unilateral problems. Ann. Mat. Pura Appl. IV Ser. 152, 183–196 (1988)

    Article  MathSciNet  Google Scholar 

  10. Boccardo, L., Pellacci, B.: Critical points of non-regular integral functionals. Rev. Math. Iberoam. 34, 1001–1020 (2018)

    Article  MathSciNet  Google Scholar 

  11. Bögelein, V., Duzaar, F., Marcellini, P., Scheven, C.: Doubly nonlinear equations of porous medium type. Arch. Ration. Mech. Anal. 229, 503–545 (2018)

    Article  MathSciNet  Google Scholar 

  12. Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Universitext XIV, Springer, New York (2011)

    Book  Google Scholar 

  13. Candela, A.M., Fragnelli, G., Mugnail, D.: Quasilinear problems without the Ambrosetti–Rabinowitz condition. Minimax Theory Appl. 6, 239–250 (2021)

    MathSciNet  Google Scholar 

  14. Candela, A.M., Palmieri, G.: Multiple solutions of some nonlinear variational problems. Adv. Nonlinear Stud. 6, 269–286 (2006)

    Article  MathSciNet  Google Scholar 

  15. Candela, A.M., Palmieri, G.: Infinitely many solutions of some nonlinear variational equations. Calc. Var. Partial Differ. Equ. 34, 495–530 (2009)

    Article  MathSciNet  Google Scholar 

  16. Candela, A.M., Palmieri, G.: Some abstract critical point theorems and applications. Discrete Contin. Dyn. Syst. Suppl. 2009, 133–142 (2009)

    MathSciNet  Google Scholar 

  17. Candela, A.M., Palmieri, G., Salvatore, A.: Positive solutions of modified Schrödinger equations on unbounded domains (Preprint)

  18. Candela, A.M., Salvatore, A.: Positive solutions for some generalised \(p-\)Laplacian problems. Discrete Contin. Dyn. Syst. Ser. 13, 1935–1945 (2020)

    MathSciNet  Google Scholar 

  19. Candela, A.M., Salvatore, A.: Existence of minimizer for some quasilinear elliptic problems. Discrete Contin. Dyn. Syst. Ser. 13, 3335–3345 (2020)

    MathSciNet  Google Scholar 

  20. Candela, A.M., Salvatore, A.: Existence of radial bounded solutions for some quasilinear elliptic equations in \({\mathbb{R} }^{N}\). Nonlinear Anal. 191, 111625 (2020)

    Article  MathSciNet  Google Scholar 

  21. Candela, A.M., Salvatore, A., Sportelli, C.: Bounded solutions for quasilinear modified Schrödinger equations. Calc. Var. Partial Differ. Equ. 61, 220 (2022)

    Article  Google Scholar 

  22. Cherfils, L., Ilyasov, Y.: On the stationary solutions of generalized reaction diffusion equations with \(p\) & \(q\)-Laplacian. Commun. Pure Appl. Anal. 4, 9–22 (2005)

    Article  MathSciNet  Google Scholar 

  23. De Filippis, C., Mingione, G.: Gradient regularity in mixed local and nonlocal problems. Math. Ann. (2022). https://doi.org/10.1007/s00208-022-02512-7

    Article  Google Scholar 

  24. Fife, P.C.: Mathematical Aspects of Reacting and Diffusing Systems. Lecture Notes in Biomathematics, vol. 28. Springer, Berlin (1979)

    Book  Google Scholar 

  25. Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968)

  26. Lindqvist, P.: On the equation \({\rm div} (|\nabla u|^{p-2}\nabla u) + \lambda |u|^{p-2}u =0\). Proc. Am. Math. Soc. 109, 157–164 (1990)

    Google Scholar 

  27. Mennuni, F., Salvatore, A.: Existence of bounded solutions for a weighted quasilinear elliptic equation in \({\mathbb{R}}^{N}\). In: Recent Advances in Mathematical Analysis. Celebrating the 70th Anniversary of Francesco Altomare, Trends of Mathematics. Birkhäuser (2023). ISBN: 978-3-031-20020-5

  28. Mennuni, F., Salvatore, A.: Generalized quasilinear elliptic equations in \({\mathbb{R} }^{N}\). Mediterr. J. Math. 20, 205 (2023)

    Article  Google Scholar 

  29. Mingione, G., Rǎdulescu, V.: Recent developments in problems with nonstandard growth and nonuniform ellipticity. J. Math. Anal. Appl. 501, 125197 (2021)

    Article  MathSciNet  Google Scholar 

  30. Mugnai, D.: Coupled Klein–Gordon and Born-Infeld type equations: looking for solitary waves. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460, 1519–1527 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  31. Mugnai, D., Papageorgiou, N.S.: Bifurcation for positive solutions of nonlinear diffusive logistic equations in \({\mathbb{R} }^{N}\) with indefinite weight. Indiana Univ. Math. J. 63, 1397–1418 (2014)

    Article  MathSciNet  Google Scholar 

  32. Mugnai, D., Papageorgiou, N.S.: Wang’s multiplicity result for superlinear \((p, q)-\) equations without the Ambrosetti–Rabinowitz condition. Trans. Am. Math. Soc. 366, 4919–4937 (2014)

  33. Mugnai, D., Proietti Lippi, E.: Fractional Choquard equations with confining potential with or without subcritical perturbations. Adv. Nonlinear Stud. 20, 163–183 (2020)

    Article  MathSciNet  Google Scholar 

  34. Papageorgiou, N.S., Rǎdulescu, V., Zhang, J.: Ambrosetti-Prodi problems for the Robin \((p, q)-\) Laplacian. Nonlinear Anal. Real World Appl. Appl. 67, 103640 (2022)

    Article  MathSciNet  Google Scholar 

  35. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MathSciNet  Google Scholar 

  36. Royden, H.L., Fitzpatrick, P.M.: Real Analysis, 4th edn. Prentice Hall, Prentice (2010)

    Google Scholar 

  37. Salvatore, A., Sportelli, C.: On existence and multiplicity of solutions for generalized \((p,q)-\)Laplacian equations on \({\mathbb{R}}^{N}\). Adv. Diff. Equ. (To appear)

  38. Wilhelmsson, H.: Explosive instabilities of reaction–diffusion equations. Phys. Rev. A 36, 965–966 (1987)

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous referee for her/his extremely careful report, which has highly improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri Mugnai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

F.M. is a member of the Research Group INdAM-GNAMPA. D.M. is a member of the Research Group INdAM-GNAMPA. He is supported by the GNAMPA Project 2023 Variational and non-variational problems with lack of compactness CUP_E53C22001930001, and by the Fondo di finanziamento per le attività base di ricerca (FFABR) 2017.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mennuni, F., Mugnai, D. Leray–Lions Equations of (pq)-Type in the Entire Space with Unbounded Potentials. Milan J. Math. (2024). https://doi.org/10.1007/s00032-024-00391-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00032-024-00391-y

Keywords

Mathematics Subject Classification

Navigation