Skip to main content
Log in

Generalised Gagliardo–Nirenberg Inequalities Using Weak Lebesgue Spaces and BMO

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

Using elementary arguments based on the Fourier transform we prove that for \({1 \leq q < p < \infty}\) and \({s \geq 0}\) with s > n(1/2 − 1/p), if \({f \in L^{q,\infty} (\mathbb{R}^n) \cap \dot{H}^s (\mathbb{R}^n)}\), then \({f \in L^p(\mathbb{R}^n)}\) and there exists a constant c p,q,s such that

$$\| f \|_{L^{p}} \leq c_{p,q,s} \| f \|^\theta _{L^{q,\infty}} \| f \|^{1-\theta}_{\dot{H}^s},$$

where 1/pθ/q + (1−θ)(1/2−s/n). In particular, in \({\mathbb{R}^2}\) we obtain the generalised Ladyzhenskaya inequality \({\| f \| _{L^4} \leq c \| f \|^{1/2}_{L^{2,\infty}} \| f \|^{1/2}_{\dot{H}^1}}\).We also show that for s = n/2 and q > 1 the norm in \({\| f \|_{\dot{H}^{n/2}}}\) can be replaced by the norm in BMO. As well as giving relatively simple proofs of these inequalities, this paper provides a brief primer of some basic concepts in harmonic analysis, including weak spaces, the Fourier transform, the Lebesgue Differentiation Theorem, and Calderon–Zygmund decompositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Azzam & J. Bedrossian, Bounded mean oscillation and the uniqueness of active scalar equations. arXiv:1108.2735v2, 2012.

  2. Bahouri H., Chemin J.-Y., Danchin R.: Fourier analysis and nonlinear partial differential equations. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  3. C. Bennett & R. Sharpley, Interpolation of Operators. Academic, New York, 1988.

  4. J. Bergh & J. Löfström, Interpolation Spaces. Springer-Verlag, Berlin/Heidelberg/NewYork, 1976.

  5. J.-Y. Chemin, B. Desjardins, I. Gallagher, & E. Grenier, Mathematical Geophysics. An introduction to rotating fluids and the Navier–Stokes equations. Oxford University Press, 2006.

  6. Chen J., Zhu X.: A note on BMO and its application. J. Math. Anal. Appl. 303, 696–698 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. J.-G. Dong & T.-J. Xiao, Notes on interpolation inequalities. Adv. Diff. Eq. (2011) 913403.

  8. L.C. Evans & R.F. Gariepy, Measure theory and fine properties of functions. CRC Press, 1992.

  9. Evans L.C.: Partial Differential Equations 2nd Edition. American Mathematical Soceity, Providence (2010)

    MATH  Google Scholar 

  10. G.B. Folland, Real Analysis. 2nd Edition, Wiley, 1999.

  11. L. Grafakos, Classical Fourier analysis. 2nd Edition, Springer, 2008.

  12. L. Grafakos, Modern Fourier analysis. 2nd Edition, Springer, 2009.

  13. Hanks R.: Interpolation by the Real Method between BMO, L α (0 <  α <  ∞) and H α (0 <  α <  ∞). Indiana Univ. Math. J. 26, 679–689 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hunt R.: An extension of the Marcinkiewicz interpolation theorem to Lorentz spaces. Bull. Amer. Math. Soc. 70, 803–807 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  15. Janson S., Jones P.W.: Interpolation between H p spaces: the complex method. J. Funct. Anal. 48, 58–80 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. John F., Nirenberg L.: On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14, 415–426 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kozono H., Wadade H.: Remarks on Gagliardo–Nirenberg type inequality with critical Sobolev space and BMO. Math. Zeit. 295, 935–950 (2008)

    Article  MathSciNet  Google Scholar 

  18. H. Kozono, K. Minamidate, & H. Wadade, Sobolevs imbedding theorem in the limiting case with Lorentz space and BMO. pages 159–167 in H. Kozono, T. Ogawa, K. Tanaka, & Y. Tsutsumi, Asymptotic analysis and singularities: hyperbolic and dissipative PDEs and fluid mechanices, Advanced studies in pure mathematics 47-1, Mathematical Society of Japan, Tokyo, 2007.

  19. O.A. Ladyzhenskaya, Solution “in the large” to the boundary value problem for the Navier–Stokes equations in two space variables. Sov. Phys. Dokl. 3 (1958), 1128–1131. Translation from Dokl. Akad. Nauk SSSR 123 (1958), 427–429.

  20. Lunardi A.: Interpolation theory 2nd Edition. Edizioni della Normale, Pisa (2009)

    MATH  Google Scholar 

  21. D.S. McCormick, J.C. Robinson, & J.L. Rodrigo, Existence and uniqueness for a coupled parabolic-elliptic model with applications to magnetic relaxation. arXiv:1303.6352v1, 2013.

  22. Moffatt H.K.: Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. I. Fundamentals. J. Fluid Mech. 159, 359–378 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nirenberg L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13, 116–162 (1955)

    Google Scholar 

  24. Stein E.M.: Harmonic analysis. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Robinson.

Additional information

DSMcC is a member of the Warwick “MASDOC” doctoral training centre, which is funded by the EPSRC grant EP/HO23364/1. JCR is supported by an EPSRC Leadership Fellowship EP/G007470/1.

Lecture held by J. Robinson in the Seminario Matematico e Fisico on November 27, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCormick, D.S., Robinson, J.C. & Rodrigo, J.L. Generalised Gagliardo–Nirenberg Inequalities Using Weak Lebesgue Spaces and BMO. Milan J. Math. 81, 265–289 (2013). https://doi.org/10.1007/s00032-013-0202-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-013-0202-6

Mathematics Subject Classification (2010)

Keywords

Navigation