Skip to main content
Log in

Hardy–Littlewood–Sobolev Inequality on Mixed-Norm Lebesgue Spaces

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study the Hardy–Littlewood–Sobolev inequality on mixed-norm Lebesgue spaces. We give a complete characterization of indices \(\vec p\) and \(\vec q\) such that the Riesz potential is bounded from \(L^{\vec p}\) to \(L^{\vec q}\). In particular, all the endpoint cases are studied. As a result, we get the mixed-norm Hardy–Littlewood–Sobolev inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, D.R., Bagby, R.J.: Translation-dilation invariant estimates for Riesz potentials. Indiana Univ. Math. J. 23(11), 1051–1067 (1974)

    Article  MathSciNet  Google Scholar 

  2. Bagby, R.J.: An extended inequality for the maximal function. Proc. Am. Math. Soc. 48, 419–422 (1975)

    Article  MathSciNet  Google Scholar 

  3. Bandaliyev, R.A., Serbetci, A., Hasanov, S.G.: On Hardy inequality in variable Lebesgue spaces with mixed norm. Indian J. Pure Appl. Math. 49(4), 765–782 (2018)

    Article  MathSciNet  Google Scholar 

  4. Benea, C., Muscalu, C.: Multiple vector-valued inequalities via the helicoidal method. Anal. PDE 9(8), 1931–1988 (2016)

    Article  MathSciNet  Google Scholar 

  5. Benea, C., Muscalu, C.: Quasi-Banach valued inequalities via the helicoidal method. J. Funct. Anal. 273(4), 1295–1353 (2017)

    Article  MathSciNet  Google Scholar 

  6. Benedek, A., Calderón, A.P., Panzone, R.: Convolution operators on Banach space valued functions. Proc. Natl. Acad. Sci. USA 48, 356–365 (1962)

    Article  MathSciNet  Google Scholar 

  7. Benedek, A., Panzone, R.: The spaces \(L^P\), with mixed norm. Duke Math. J. 28, 301–309 (1961)

    Article  MathSciNet  Google Scholar 

  8. Bergh, J., Löfström, J.: Interpolation Spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, No. 223. Springer, Berlin (1976)

  9. Boggarapu, P., Roncal, L., Thangavelu, S.: Mixed norm estimates for the Cesàro means associated with Dunkl-Hermite expansions. Trans. Am. Math. Soc. 369(10), 7021–7047 (2017)

    Article  Google Scholar 

  10. Carneiro, E., Oliveira e Silva, D., Sousa, M.: Sharp mixed norm spherical restriction. Adv. Math. 341, 583–608 (2019)

    Article  MathSciNet  Google Scholar 

  11. Chen, T., Sun, W.: Iterated weak and weak mixed-norm spaces with applications to geometric inequalities. J. Geom. Anal. 30(4), 4268–4323 (2020)

    Article  MathSciNet  Google Scholar 

  12. Chen, T., Sun, W.: Extension of multilinear fractional integral operators to linear operators on mixed-norm Lebesgue spaces. Math. Ann. 379(3–4), 1089–1172 (2021)

    Article  MathSciNet  Google Scholar 

  13. Ciaurri, O., Nowak, A., Roncal, L.: Two-weight mixed norm estimates for a generalized spherical mean Radon transform acting on radial functions. SIAM J. Math. Anal. 49(6), 4402–4439 (2017)

    Article  MathSciNet  Google Scholar 

  14. Cleanthous, G., Georgiadis, A.G., Nielsen, M.: Anisotropic mixed-norm Hardy spaces. J. Geom. Anal. 27(4), 2758–2787 (2017)

    Article  MathSciNet  Google Scholar 

  15. Córdoba, A., Latorre Crespo, E.: Radial multipliers and restriction to surfaces of the Fourier transform in mixed-norm spaces. Math. Z. 286(3–4), 1479–1493 (2017)

    Article  MathSciNet  Google Scholar 

  16. Cwikel, M.: On \((L^{p_0}(A_{0}),\, L^{p_{1}}(A_{1}))_{\theta , q}\). Proc. Am. Math. Soc. 44(2), 286–292 (1974)

    MATH  Google Scholar 

  17. Duoandikoetxea, J.: Fourier Analysis. Transl. from the Spanish and revised by David Cruz-Uribe., vol. 29. American Mathematical Society (AMS), Providence, RI (2001)

  18. Fefferman, C., Stein, E.M.: Some maximal inequalities. Am. J. Math. 93, 107–115 (1971)

    Article  MathSciNet  Google Scholar 

  19. Fernandez, D.L.: Vector-valued singular integral operators on \(L^p\)-spaces with mixed norms and applications. Pac. J. Math. 129(2), 257–275 (1987)

    Article  Google Scholar 

  20. Georgiadis, A.G., Johnsen, J., Nielsen, M.: Wavelet transforms for homogeneous mixed-norm Triebel-Lizorkin spaces. Monatsh. Math. 183(4), 587–624 (2017)

    Article  MathSciNet  Google Scholar 

  21. Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Mathematics, vol. 249, 3rd edn. Springer, New York (2014)

  22. Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics, vol. 250, 3rd edn. Springer, New York (2014)

  23. Hart, J., Torres, R.H., Wu, X.: Smoothing properties of bilinear operators and Leibniz-type rules in Lebesgue and mixed Lebesgue spaces. Trans. Am. Math. Soc. 370(12), 8581–8612 (2018)

    Article  MathSciNet  Google Scholar 

  24. Ho, K.-P.: Mixed norm Lebesgue spaces with variable exponents and applications. Riv. Math. Univ. Parma (N.S.) 9(1), 21–44 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Hörmander, L.: Estimates for translation invariant operators in \(L^{p}\) spaces. Acta Math. 104, 93–140 (1960)

    Article  MathSciNet  Google Scholar 

  26. Huang, L., Liu, J., Yang, D., Yuan, W.: Atomic and littlewood-paley characterizations of anisotropic mixed-norm hardy spaces and their applications. J. Geom. Anal. 29(3), 1991–2067 (2019)

    Article  MathSciNet  Google Scholar 

  27. Huang, L., Liu, J., Yang, D., Yuan, W.: Dual spaces of anisotropic mixed-norm Hardy spaces. Proc. Am. Math. Soc. 147(3), 1201–1215 (2019)

    Article  MathSciNet  Google Scholar 

  28. Huang, L., Yang, D.: On function spaces with mixed norms—a survey. J. Math. Study 54(3), 262–336 (2021)

    MathSciNet  MATH  Google Scholar 

  29. Hytönen, T., van Neerven, J., Veraar, M., Weis, L.: Analysis in Banach Spaces, vol. I. Martingales and Littlewood-Paley Theory, vol. 63 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Cham (2016)

  30. Janson, S.: On interpolation of multilinear operators. In: Function Spaces and Applications (Lund, 1986). Lecture Notes in Mathematics, vol. 1302, pp. 290–302. Springer, Berlin (1988)

  31. Johnsen, J., Munch Hansen, S., Sickel, W.: Anisotropic Lizorkin-Triebel spaces with mixed norms–traces on smooth boundaries. Math. Nachr. 288(11–12), 1327–1359 (2015)

    Article  MathSciNet  Google Scholar 

  32. Karapetyants, A.N., Samko, S.G.: On mixed norm Bergman-Orlicz-Morrey spaces. Georgian Math. J. 25(2), 271–282 (2018)

    Article  MathSciNet  Google Scholar 

  33. Kurtz, D.S.: Classical operators on mixed-normed spaces with product weights. Rocky Mt. J. Math. 37(1), 269–283 (2007)

    Article  MathSciNet  Google Scholar 

  34. Lechner, R.: Factorization in mixed norm Hardy and BMO spaces. Studia Math. 242(3), 231–265 (2018)

    Article  MathSciNet  Google Scholar 

  35. Li, P., Stinga, P.R., Torrea, J.L.: On weighted mixed-norm Sobolev estimates for some basic parabolic equations. Commun. Pure Appl. Anal. 16(3), 855–882 (2017)

    Article  MathSciNet  Google Scholar 

  36. Lions, J.-L., Peetre, J.: Sur une classe d’espaces d’interpolation. Inst. Hautes Études Sci. Publ. Math. 19, 5–68 (1964)

    Article  MathSciNet  Google Scholar 

  37. Milman, M.: On interpolation of \(2^{n}\) Banach spaces and Lorentz spaces with mixed norms. J. Funct. Anal. 41(1), 1–7 (1981)

    Article  Google Scholar 

  38. Muscalu, C., Schlag, W.: Classical and Multilinear Harmonic Analysis, vol. I. Cambridge Studies in Advanced Mathematics, vol. 137. Cambridge University Press, Cambridge (2013)

  39. Pisier, G.: The \(k_t\)-functional for the interpolation couple \(l_1(a_0)\), \(l_{\infty }(a_1)\). J. Approx. Theory 73(1), 106–117 (1993)

    Article  MathSciNet  Google Scholar 

  40. Rubio de Francia, J.L., Ruiz, F.J., Torrea, J.L.: Calderón-Zygmund theory for operator-valued kernels. Adv. Math. 62, 7–48 (1986)

    Article  MathSciNet  Google Scholar 

  41. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Companies Inc, Madison (1987)

    MATH  Google Scholar 

  42. Sagher, Y.: Interpolation of \(r\)-banach spaces. Studia Math. 41, 45–70 (1972)

    Article  MathSciNet  Google Scholar 

  43. Sandikçi, A.: On the inclusions of some Lorentz mixed normed spaces and Wiener-Ditkin sets. J. Math. Anal. 9(2), 1–9 (2018)

    MathSciNet  Google Scholar 

  44. Stefanov, A., Torres, R.H.: Calderón-Zygmund operators on mixed Lebesgue spaces and applications to null forms. J. Lond. Math. Soc. (2) 70(2), 447–462 (2004)

    Article  Google Scholar 

  45. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, NJ (1970)

  46. Torres, R.H., Ward, E.L.: Leibniz’s rule, sampling and wavelets on mixed Lebesgue spaces. J. Fourier Anal. Appl. 21(5), 1053–1076 (2015)

    Article  MathSciNet  Google Scholar 

  47. Wei, M., Yan, D.: The boundedness of two classes of oscillator integral operators on mixed norm space. Adv. Math. 47(1), 71–80 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referees very much for valuable suggestions which helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenchang Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by the National Natural Science Foundation of China (11801282, U21A20426 and 12171250).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Sun, W. Hardy–Littlewood–Sobolev Inequality on Mixed-Norm Lebesgue Spaces. J Geom Anal 32, 101 (2022). https://doi.org/10.1007/s12220-021-00855-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-021-00855-2

Keywords

Mathematics Subject Classification

Navigation