Skip to main content
Log in

Affine RSK Correspondence and Crystals of Level Zero Extremal Weight Modules

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We give an affine analogue of the Robinson-Schensted-Knuth (RSK) correspondence, which generalizes the affine Robinson-Schensted correspondence by Chmutov-Pylyavskyy-Yudovina. The affine RSK map sends a generalized affine permutation of period (mn) to a pair of tableaux (PQ) of the same shape, where P belongs to a tensor product of level one perfect Kirillov-Reshetikhin crystals of type \(A_{m-1}^{(1)}\), and Q belongs to a crystal of extremal weight module of type \(A_{n-1}^{(1)}\) when \(m,n\geqslant 2\). We consider two affine crystal structures of types \(A_{m-1}^{(1)}\) and \(A_{n-1}^{(1)}\) on the set of generalized affine permutations, and show that the affine RSK map preserves the crystal equivalence. We also give a dual affine Robison-Schensted-Knuth correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beck, J., Nakajima, H.: Crystal bases and two-sided cells of quantum affine algebras. Duke Math. J. 123, 335–402 (2004)

    Article  MathSciNet  Google Scholar 

  2. Chmutov, M., Frieden, G., Kim, D., Lewis, J.B., Yudovina, E.: An affine generalization of evacuation. Selecta Math. (N.S.) 28(4), 40. Paper No. 67 (2022)

  3. Chmutov, M., Lewis, J.B., Pylyavskyy, P.: Monodromy in Kazhdan-Lusztig cells in affine type A. Math. Ann. (2022). https://doi.org/10.1007/s00208-022-02434-4

  4. Chmutov, M., Pylyavskyy, P., Yudovina, E.: Matrix-ball construction of affine Robinson-Schensted correspondence. Selecta Math. (N.S.) 24, 667–750 (2018)

    Article  MathSciNet  Google Scholar 

  5. Feigin, E., Khoroshkin, A., Makedonskyi, I.: Duality theorems for current groups. Isr. J. Math. 248, 441–479 (2022)

    Article  MathSciNet  Google Scholar 

  6. Fourier, G., Okado, M., Schilling, A.: Kirillov-Reshetikhin crystals for nonexceptional types. Adv. Math. 222, 1080–1116 (2009)

    Article  MathSciNet  Google Scholar 

  7. Fulton, W.: Young tableaux, with application to representation theory and geometry. Cambridge Univ. Press (1997)

  8. Gerber, T.: Triple crystal action in Fock spaces. Adv. Math. 329, 916–954 (2018)

    Article  MathSciNet  Google Scholar 

  9. Gerber, T., Lecouvey, C.: Duality and bicrystals on infinite binary matrices. arXiv:2009.10397 (2021)

  10. Gunawan, E., Scrimshaw, T.: Kirillov-Reshetikhin crystals B1, s for \(\widehat{\mathfrak{s} l}_n\) using Nakajima monomials. Algebr. Represent. Theory 23, 1609–1635 (2020)

    Article  MathSciNet  Google Scholar 

  11. Hernandez, D., Nakajima, H.: Level 0 monomial crystals. Nagoya Math. J. 184, 85–153 (2006)

    Article  MathSciNet  Google Scholar 

  12. Hong, J., Kang, S.-J.: Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics 42. Amer. Math. Soc. (2002)

  13. Howe, R.: Remarks on classical invariant theory. Trans. Amer. Math. Soc. 313, 539–570 (1989)

    Article  MathSciNet  Google Scholar 

  14. Imamura, T., Mucciconi, M., Sasamoto, T.: Skew RSK dynamics: Greene invariants, affine crystals and applications to q-Whittaker polynomials. Forum Math. Pi 11, Paper No. e27, pp. 101 (2023)

  15. Ishii, M.: Semi-infinite Young tableaux and standard monomial theory for semi-infinite Lakshmibai-Seshadri paths. Algebr. Comb. 3, 1141–1163 (2020)

    MathSciNet  Google Scholar 

  16. Ishii, M., Naito, S., Sagaki, D.: Semi-infinite Lakshmibai-Seshadri path model for level-zero extremal weight modules over quantum affine algebras. Adv. Math. 290, 967–1009 (2016)

    Article  MathSciNet  Google Scholar 

  17. Kang, S.-J., Kashiwara, M., Misra, K.C., Miwa, T., Nakashima, T., Nakayashiki, A.: Perfect crystals of quantum affine Lie algebras. Duke Math. J. 68, 499–607 (1992)

    Article  MathSciNet  Google Scholar 

  18. Kashiwara, M.: Crystal bases of modified quantized enveloping algebra. Duke Math. J. 73, 383–413 (1994)

    Article  MathSciNet  Google Scholar 

  19. Kashiwara, M.: On level-zero representations of quantized affine algebras. Duke Math. J. 112, 117–175 (2002)

    Article  MathSciNet  Google Scholar 

  20. Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53, 165–184 (1979)

    Article  MathSciNet  Google Scholar 

  21. Knuth, D.: Permutations, matrices, and the generalized Young tableaux. Pacific J. Math. 34, 709–727 (1970)

    Article  MathSciNet  Google Scholar 

  22. Kwon, J.-H.: Crystal graphs for Lie superalgebras and Cauchy decompositions. J. Algebraic Combin. 25, 57–100 (2007)

    Article  MathSciNet  Google Scholar 

  23. Lascoux, A.: Double crystal graphs, Studies in memory of Issai Schur. Progress in Math., Birkhäuser 210, 95–114 (2003)

  24. Lusztig, G.: Aperiodicity of quantum affine \({\mathfrak{g} l}_n\). Asian J. Math. 3, 147–178 (1999)

    Article  MathSciNet  Google Scholar 

  25. Misra, K., Miwa, T.: Crystal base for the basic representation of \(U_q(\widehat{\mathfrak{s} l}(n))\). Comm. Math. Phys. 134, 79–88 (1990)

    Article  MathSciNet  Google Scholar 

  26. Naito, S., Sagaki, D.: Path model for a level-zero extremal weight module over a quantum affine algebra II. Adv. Math. 200, 102–124 (2006)

    Article  MathSciNet  Google Scholar 

  27. Nakayashiki, A., Yamada, Y.: Kostka polynomials and energy functions in solvable lattice models. Selecta Math. (N.S.) 3, 547–599 (1997)

    Article  MathSciNet  Google Scholar 

  28. Sagan, B., Stanley, R.: Robinson-Schensted algorithms for skew tableaux. J. Combin. Theory, Series A 55, 161–193 (1990)

    Article  MathSciNet  Google Scholar 

  29. Shi, J.Y.: Kazhdan-Lusztig cells of certain affine Weyl groups. Lecture Notes in Mathematics, vol. 1179. Springer (1986)

  30. Shi, J.Y.: The generalized Robinson-Schensted algorithm on the affine Weyl group of type \(A_{n-1}\). J. Algebra 139, 364–394 (1991)

    Article  MathSciNet  Google Scholar 

  31. Shimozono, M.: Crystals for Dummies. http://www.aimath.org/WWN/kostka/crysdumb.pdf (2005)

  32. Tingley, P.: Three combinatorial models for \(\widehat{sl}_n\) crystals, with applications to cylindric plane partitions. Int. Math. Res. Not., no. 2, Art. ID rnm143, 40. (2008)

  33. Uglov, D.: Canonical bases of higher-level \(q\)-deformed Fock spaces and Kazhdan-Lusztig polynomials. Progr. Math. 191, 249–299 (1999)

    MathSciNet  Google Scholar 

  34. van Leeuwen, M.: Double crystals of binary and integral matrices. Electron. J. Combin. 13 (2006)

Download references

Acknowledgements

The authors would like to thank Dongkwan Kim for the kind explanation on the works [2, 4] and the referees for very careful reading and helpful comments.

Funding

This work is supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2019R1A2C1084833 and 2020R1A5A1016126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunse Lee.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, JH., Lee, H. Affine RSK Correspondence and Crystals of Level Zero Extremal Weight Modules. Transformation Groups (2024). https://doi.org/10.1007/s00031-024-09857-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00031-024-09857-0

Mathematics Subject Classification (2010)

Navigation