Skip to main content
Log in

Local Cohomology of Modular Invariant Rings

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

For K a field, consider a finite subgroup G of \({\text {GL}}_n(K)\) with its natural action on the polynomial ring \(R:= K[x_1,\dots ,x_n]\). Let \(\mathfrak {n}\) denote the homogeneous maximal ideal of the ring of invariants \(R^G\). We study how the local cohomology module \(H^n_{\mathfrak {n}}(R^G)\) compares with \(H^n_{\mathfrak {n}}(R)^G\). Various results on the a-invariant and on the Hilbert series of \(H^n_\mathfrak {n}(R^G)\) are obtained as a consequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benson, D.J.: Polynomial invariants of finite groups, London Math. Soc. Lecture Note Ser. 190, Cambridge University Press, Cambridge, (1993)

  2. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24, 235–265 (1997)

  3. Braun, A.: On the Gorenstein property for modular invariants. J. Algebra 345, 81–99 (2011)

    Article  MathSciNet  Google Scholar 

  4. Braun, A.: The Gorenstein property for modular binary forms invariants. J. Algebra 451, 232–247 (2016)

    Article  MathSciNet  Google Scholar 

  5. Broer, A.: The direct summand property in modular invariant theory. Transform. Groups 10, 5–27 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  6. Campbell, H.E.A., Wehlau, D.L.: Modular invariant theory. Encyclopaedia Math. Sci. 139, Springer-Verlag, Berlin, (2011)

  7. Ellingsrud, G., Skjelbred, T.: Profondeur d’anneaux d’invariants en caractéristique \(p\). Compositio Math. 41, 233–244 (1980)

    MathSciNet  Google Scholar 

  8. Feshbach, M.: \(p\)-subgroups of compact Lie groups and torsion of infinite height in \(H^*(BG)\). II. Michigan Math. J. 29, 299–306 (1982)

    MathSciNet  Google Scholar 

  9. Fleischmann, P., Woodcock, C.: Relative invariants, ideal classes and quasi-canonical modules of modular rings of invariants. J. Algebra 348, 110–134 (2011)

    Article  MathSciNet  Google Scholar 

  10. Goto, S., Watanabe, K.-i.: On graded rings I. J. Math. Soc. Japan 30, 179–213 (1978)

  11. Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. available at http://www.math.uiuc.edu/Macaulay2/

  12. Hashimoto, M.: The symmetry of finite group schemes, Watanabe type theorem, and the \(a\)-invariant of the ring of invariants, arXiv:2309.10256

  13. Hochster, M., Eagon, J.A.: Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci. Amer. J. Math. 93, 1020–1058 (1971)

    Article  MathSciNet  Google Scholar 

  14. Jeffries, J.: Rings of invariants, \(F\)-regularity, and local cohomology, Ph.D. thesis, The University of Utah, (2015)

  15. Kemper, G., Körding, E., Malle, G., Matzat, B.H., Vogel, D., Wiese, G.: A database of invariant rings. Experiment. Math. 10, 537–542 (2001)

    Article  MathSciNet  Google Scholar 

  16. Kunz, E.: Residues and duality for projective algebraic varieties. Univ. Lecture Ser. 47, American Mathematical Society, Providence, RI, (2008)

  17. Kustin, A., Polini, C., Ulrich, B.: Integral extensions and the \(a\)-invariant. J. Pure Appl. Algebra 216, 2800–2806 (2012)

    Article  MathSciNet  Google Scholar 

  18. Neusel, M.D., Smith, L.: Invariant theory of finite groups. Math. Surveys Monogr. 94, American Mathematical Society, Providence, RI, (2002)

  19. Peskin, B.R.: On the dualizing sheaf of a quotient scheme. Comm. Algebra 12, 1855–1869 (1984)

    Article  MathSciNet  Google Scholar 

  20. Stanley, R.P.: Invariants of finite groups and their applications to combinatorics. Bull. Amer. Math. Soc. 1, 475–511 (1979)

    Article  MathSciNet  Google Scholar 

  21. Watanabe, K.-i.: Certain invariant subrings are Gorenstein I. Osaka Math. J. 11, 1–8 (1974)

  22. Watanabe, K.-i.: Certain invariant subrings are Gorenstein II. Osaka Math. J. 11, 379–388 (1974)

Download references

Acknowledgements

We have benefitted from several examples computed using the computer algebra systems Macaulay2 [11] and Magma [2]; the use of these is gratefully acknowledged. We are also deeply grateful to Gregor Kemper for sharing the database [15] and for related discussions, and to Mitsuyasu Hashimoto for valuable discussions. We thank the referees for a careful proofreading and for useful comments.

Funding

K.G. was supported by a Fulbright-Nehru Postdoctoral Research Fellowship at the University of Utah, J.J. by NSF CAREER Award DMS 2044833, and A.K.S. by NSF grants DMS 1801285 and DMS 2101671.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Jeffries.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goel, K., Jeffries, J. & Singh, A.K. Local Cohomology of Modular Invariant Rings. Transformation Groups (2024). https://doi.org/10.1007/s00031-024-09851-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00031-024-09851-6

Mathematics Subject Classification (2010)

Navigation