Skip to main content
Log in

AN EXPLICIT ISOMORPHISM BETWEEN QUANTUM AND CLASSICAL \( \mathfrak{s}{\mathfrak{l}}_n \)

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let \( \mathfrak{g} \) be a complex semisimple Lie algebra. Although the quantum group \( {U}_{\hslash \mathfrak{g}} \) is known to be isomorphic, as an algebra, to the undeformed enveloping algebra \( U\mathfrak{g}\left\llbracket \hslash \right\rrbracket \), no such isomorphism is known when \( \mathfrak{g}\ne \mathfrak{s}{\mathfrak{l}}_2 \). In this paper, we construct an explicit isomorphism for \( \mathfrak{g}=\mathfrak{s}{\mathfrak{l}}_n \), for every n ≥ 2, which preserves the standard flag of type A. We conjecture that this isomorphism quantizes the Poisson diffeomorphism of Alekseev and Meinrenken [2].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Yu. Alekseev, On Poisson actions of compact Lie groups on symplectic manifolds, J. Differential Geom. 45 (1997), no. 2, 241–256.

    Article  MathSciNet  Google Scholar 

  2. A. Yu. Alekseev, E. Meinrenken, Ginzburg–Weinstein via Gelfand–Zeitlin, J. Differential Geom. 76 (2007), no. 1, 1–34.

    Article  MathSciNet  Google Scholar 

  3. A. Yu. Alekseev, E. Meinrenken, Linearization of Poisson–Lie group structures, J. Symplectic Geom. 14 (2016), no. 1, 227–267.

    Article  MathSciNet  Google Scholar 

  4. A. Appel, S. Gautam, Quantization of Alekseev–Meinrenken diffeomorphism, in preparation.

  5. A. Appel, V. Toledano Laredo, Monodromy of the Casimir connection of a symmetrisable Kac–Moody algebra, arXiv:1512.03041 (2015).

  6. A. Appel, V. Toledano Laredo, Uniqueness of Coxeter structures on Kac–Moody algebras, Adv. Math. 347 (2019), 1–104.

    Article  MathSciNet  Google Scholar 

  7. P. P. Boalch, Stokes matrices, Poisson Lie groups and Frobenius manifolds, Invent. Math. 146 (2001), no. 3, 479–506.

    Article  MathSciNet  Google Scholar 

  8. J. Brundan, A. Kleshchev, Parabolic presentations of the Yangian Y (\( \mathfrak{g}{\mathfrak{l}}_n \)), Comm. Math. Phys. 254 (2005), 191–220.

    Article  MathSciNet  Google Scholar 

  9. V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1994.

    MATH  Google Scholar 

  10. J. Dixmier, Enveloping Algebras, Graduate Studies in Mathematics, Vol. 11, American Mathematical Society, Providence, RI, 1996.

  11. A. De Sole, V. G. Kac, D. Valeri, A Lax type operator for quantum finite W-algebras, Selecta Math. (N.S.) 24 (2018), no. 5, 4617–4657.

    Article  MathSciNet  Google Scholar 

  12. В. Г. Дринфельд, Алгебры Хопфа и квантовое уравнение Янга–Бакстера, ДАН СССР 283 (1985), no. 5, 1060–1064. Engl. transl.: V. G. Drinfeld, Hopf algebras and the quantum Yang–Baxter equation, Soviet Math. Dokl. 32 (1985), no. 1, 254–258.

  13. V. G. Drinfeld, Quantum groups, in: Proceedings of the I.C.M., Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, pp. 798–820.

  14. В. Г. Дринфельд, Новая реализация янгианов и квантовых аффинных алгебр, ДАН СССР 296 (1987), no. 1, 13–17. Engl. transl.: V. G. Drinfeld, A new realization of Yangians and quantum affine algebras, Soviet Math. Dokl. 36 (1988), no. 2, 212–216.

  15. В. Г. Дринфельд, О почти коммутативных алгебрах Хопфа, Алгебр и анализ 1 (1989), вьш. 2, 30–46. Engl. transl.: V. G. Drinfeld, On almost cocommutative Hopf algebras, Leningrad Math. J. 1 (1990), no. 2, 321–342.

  16. B. Enriquez, P. Etingof, I. Marshall, Comparison of Poisson structures and Poisson–Lie dynamical r-matrices, Int. Math. Res. Not. (2005), no. 36, 2183–2198.

  17. S. Gautam, V. Toledano Laredo, Yangians and quantum loop algebras, Selecta Math. (N.S.) 19 (2013), no. 2, 271–336.

    Article  MathSciNet  Google Scholar 

  18. S. Gautam, V. Toledano Laredo, Yangians, quantum loop algebras, and abelian difference equations, J. Amer. Math. Soc. 29 (2016), no. 3, 775–824.

    Article  MathSciNet  Google Scholar 

  19. F. Gavarini, The quantum duality principle, Ann. Inst. Fourier (Grenoble) 52 (2002), no. 3, 809–834.

    Article  MathSciNet  Google Scholar 

  20. V. L. Ginzburg, A. Weinstein, Lie–Poisson structure on some Poisson Lie groups, J. Amer. Math. Soc. 5 (1992), no. 2, 445–453.

    Article  MathSciNet  Google Scholar 

  21. M. Jimbo, A q-difference analogue of U(\( \mathfrak{g} \)) and the Yang–Baxter equation, Lett. Math. Phys. 10 (1985), no. 1, 63–69.

    Article  MathSciNet  Google Scholar 

  22. M. Jimbo, Quantum R–matrix for the generalized Toda system, Comm. Math. Phys. 102 (1986), 537–547.

    Article  MathSciNet  Google Scholar 

  23. S. Z. Levendorskii, On generators and defining relations of Yangians, J. Geometry and Physics 12 (1992), 1–11.

    Article  MathSciNet  Google Scholar 

  24. A. Molev, Yangians and Classical Lie Algebras, Mathematical Surveys and Monographs, Vol. 143, American Mathematical Society, Providence, RI, 2007.

  25. M. Nazarov, V. Tarasov, Representations of Yangians with Gelfand–Zetlin bases, J. Reine Angew. Math. 496 (1998), 181–212.

    Article  MathSciNet  Google Scholar 

  26. V. Toledano Laredo, A Kohno–Drinfeld theorem for quantum Weyl groups, Duke Math. J. 112 (2002), no. 3, 421–451.

    Article  MathSciNet  Google Scholar 

  27. V. Toledano Laredo, Quasi–Coxeter algebras, Dynkin diagram cohomology and quantum Weyl groups, Int. Math. Res. Pap. 2008 (2008), Art. ID rpn009, 167 pp.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. GAUTAM.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

APPEL, A., GAUTAM, S. AN EXPLICIT ISOMORPHISM BETWEEN QUANTUM AND CLASSICAL \( \mathfrak{s}{\mathfrak{l}}_n \). Transformation Groups 25, 945–980 (2020). https://doi.org/10.1007/s00031-019-09543-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-019-09543-6

Navigation