Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Transformation Groups
  3. Article
EQUIVARIANT HIRZEBRUCH CLASSES AND MOLIEN SERIES OF QUOTIENT SINGULARITIES
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Towards the classification of symplectic linear quotient singularities admitting a symplectic resolution

26 June 2021

Gwyn Bellamy, Johannes Schmitt & Ulrich Thiel

Elliptic classes, McKay correspondence and theta identities

08 September 2020

Małgorzata Mikosz & Andrzej Weber

The correction term for the Riemann–Roch formula of cyclic quotient singularities and associated invariants

28 September 2018

José Ignacio Cogolludo-Agustín & Jorge Martín-Morales

An extension of the Siegel space of complex abelian varieties and conjectures on stability structures

30 August 2019

Fabian Haiden

On the Milnor and Tjurina Numbers of Zero-Dimensional Singularities

01 March 2022

A. G. Aleksandrov

Discriminants and Semi-orthogonal Decompositions

01 February 2022

Alex Kite & Ed Segal

Degrees of Cohomology Classes of Multisingularities in Hurwitz Spaces of Rational Functions

01 January 2019

B. S. Bychkov

On symplectic resolutions and factoriality of Hamiltonian reductions

14 June 2019

Gwyn Bellamy & Travis Schedler

Multiplicity of singularities is not a bi-Lipschitz invariant

29 January 2020

Lev Birbrair, Alexandre Fernandes, … Misha Verbitsky

Download PDF
  • Open Access
  • Published: 13 November 2017

EQUIVARIANT HIRZEBRUCH CLASSES AND MOLIEN SERIES OF QUOTIENT SINGULARITIES

  • MARIA DONTEN-BURY1,2 &
  • ANDRZEJ WEBER1,3 

Transformation Groups volume 23, pages 671–705 (2018)Cite this article

  • 316 Accesses

  • 4 Citations

  • Metrics details

Abstract

We study properties of the Hirzebruch class of quotient singularities ℂn/G, where G is a finite matrix group. The main result states that the Hirzebruch class coincides with the Molien series of G under suitable substitution of variables. The Hirzebruch class of a crepant resolution can be described specializing the orbifold elliptic genus constructed by Borisov and Libgober. It is equal to the combination of Molien series of centralizers of elements of G. This is an incarnation of the McKay correspondence. The results are illustrated with several examples, in particular of 4-dimensional symplectic quotient singularities.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. M. F. Atiyah, R. Bott, The moment map and equivariant cohomology, Topology 23 (1984), 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Aluffi, Grothendieck classes and Chern classes of hyperplane arrangements, Int. Math. Res. Not. IMRN 2013 (2013), no. 8, 1873–1900.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Aluffi, L. C. Mihalcea, Chern classes of Schubert cells and varieties, J. Algebraic Geom. 18 (2009), no. 1, 63–100.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Andreatta, J. A. Wiśniewski, 4-dimensional symplectic contractions, Geom. Dedicata 168 (2014), 311–337.

    Article  MathSciNet  MATH  Google Scholar 

  5. V. V. Batyrev. Non-Archimedean integrals and stringy Euler numbers of log-terminal pairs, J. Eur. Math. Soc. (JEMS) 1 (1999), no. 1, 5–33.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Baum, Fixed point formula for singular varieties, in: Current Trends in Algebraic Topology, Part 2 (London, Ont., 1981), CMS Conf. Proc., Vol. 2, Amer. Math. Soc., Providence, RI, 1982, pp. pages 3–22.

  7. P. Baum, A. Connes, Chern character for discrete groups, in: A fête of Topology, Academic Press, Boston, MA, 1988, pp. 163–232.

  8. P. Baum, W. Fulton, G. Quart, Lefschetz-Riemann-Roch for singular varieties, Acta Math. 143 (1979), no. 3–4, 193–211.

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Bridgeland, A. King, M. Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001), no. 3, 535–554 (electronic).

  10. L. A. Borisov, A. Libgober, Elliptic genera of toric varieties and applications to mirror symmetry, Invent. Math. 140 (2000), no. 2, 453–485.

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Borisov, A. Libgober, Elliptic genera of singular varieties, Duke Math. J. 116 (2002), no. 2, 319–351.

    MathSciNet  MATH  Google Scholar 

  12. L. Borisov, A. Libgober, McKay correspondence for elliptic genera, Ann. of Math. (2) 161 (2005), no. 3, 1521–1569.

  13. G. Bellamy, T. Schedler, On the (non)existence of symplectic resolutions for imprimitive symplectic reection groups, ArXiv e-prints, September 2013.

  14. J.-P. Brasselet, J. Schürmann, S. Yokura, Hirzebruch classes and motivic Chern classes for singular spaces, J. Topol. Anal. 2 (2010), no. 1, 1–55.

    Article  MathSciNet  MATH  Google Scholar 

  15. N. Berline, M. Vergne. Classes caractéristiques équivariantes. Formule de localisation en cohomologie équivariante, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 9, 539–541.

  16. M. Brion, M. Vergne. An equivariant Riemann-Roch theorem for complete, simplicial toric varieties, J. Reine Angew. Math. 482 (1997), 67–92.

    MathSciNet  MATH  Google Scholar 

  17. A. Campillo, F. Delgado, S. M. Gusein-Zade. Poincaré series of a rational surface singularity, Invent. Math. 155 (2004), no. 1, 41–53.

    Article  MathSciNet  MATH  Google Scholar 

  18. K. Chandrasekharan, Elliptic Functions, Grundlehren der Mathematischen Wissenschaften, Vol. 281, Springer-Verlag, Berlin, 1985.

  19. S. E. Cappell, L. G. Maxim, J. Schürmann, J. L. Shaneson, Equivariant characteristic classes of singular complex algebraic varieties, Comm. Pure Appl. Math. 65 (2012), no. 12, 1722–1769.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. M. Cohen, Finite quaternionic reflection groups, J. Algebra 64 (1980), no. 2, 293–324.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Donten-Bury, J. A. Wiśniewski, On 81 symplectic resolutions of a 4-dimensional quotient by a group of order 32, arXiv:1409.4204 (2014).

  22. P. Donovan, The Lefschetz-Riemann-Roch formula, Bull. Soc. Math. France 97 (1969), 257–273.

    Article  MathSciNet  MATH  Google Scholar 

  23. W. Fulton, Intersection Theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Vol. 2 Springer-Verlag, Berlin, 1998.

  24. F. Hirzebruch, Neue Topologische Methoden in der Algebraischen Geometrie, Ergebnisse der Mathematik und ihrer Grenzgebiete (N.F.), Heft 9. Springer-Verlag, Berlin, 1956.

  25. J. Huh, Positivity of Chern classes of Schubert cells and varieties, J. Algebraic Geom. 25 (2016), no. 1, 177–199.

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Huybrechts, Complex Geometry, An introduction, Universitext. Springer-Verlag, Berlin, 2005.

  27. Y. Ito, M. Reid, The McKay correspondence for finite subgroups of SL(3, C), in: Higher-dimensional Complex Varieties (Trento, 1994), de Gruyter, Berlin, 1996., pp. 221–240.

  28. D. Kaledin, McKay correspondence for symplectic quotient singularities, Invent. Math. 148 (2002), no 1, 151–175.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Libgober, Elliptic genus of phases of N = 2 theories, Comm. Math. Phys. 340 (2015), no. 3, 939–958.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Lehn, C. Sorger, A symplectic resolution for the binary tetrahedral group, in: Geometric Methods in Representation Theory. II, Sémin. Congr., Vol. 24, Soc. Math. France, Paris, 2012, pp. 429–435.

  31. J. McKay, Graphs, singularities, and finite groups, in: The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), Proc. Sympos. Pure Math., Vol. 37, Amer. Math. Soc., Providence, RI, 1980, pp. 183–186.

  32. M. Mikosz, A. Weber, Equivariant Hirzebruch class for quadratic cones via degenerations, J. Singul. 12 (2015), 131–140.

    MathSciNet  MATH  Google Scholar 

  33. T. Ohmoto, Equivariant Chern classes of singular algebraic varieties with group actions, Math. Proc. Cambridge Philos. Soc. 140 (2006), no. 1, 115–134.

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Pedroza, L. W. Tu, On the localization formula in equivariant cohomology, Topology Appl. 154 (2007), no. 7, 1493–1501.

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Reid, McKay correspondence, arXiv:alg-geom/9702016 (1997).

  36. M. Saito, Mixed Hodge complexes on algebraic varieties, Math. Ann. 316 (2000), no. 2, 283–331.

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Verbitsky, Holomorphic symplectic geometry and orbifold singularities, Asian J. Math. 4 (2000), no. 3, 553–563.

    Article  MathSciNet  MATH  Google Scholar 

  38. W. Veys, Stringy zeta functions for Q-Gorenstein varieties, Duke Math. J. 120 (2003), no. 3, 469–514.

    Article  MathSciNet  MATH  Google Scholar 

  39. R. Waelder, Equivariant elliptic genera, Pacific J. Math. 235 (2008), no. 2, 345–377.

    Article  MathSciNet  MATH  Google Scholar 

  40. R. Waelder, Equivariant elliptic genera and local McKay correspondences, Asian J. Math. 12 (2008), no. 2, 251–284.

    Article  MathSciNet  MATH  Google Scholar 

  41. A. Weber, Equivariant Chern classes and localization theorem, J. Singul. 5 (2012), 153–176.

    MathSciNet  MATH  Google Scholar 

  42. A. Weber, Equivariant Hirzebruch class for singular varieties, Selecta Math. (N.S.) 22 (2016), no. 3, 1413–1454.

  43. A. Weber, Hirzebruch class and Bia lynicki-Birula decomposition, Transform. Groups 22 (2017), no. 2, 537–557.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute of Mathematics, University of Warsaw, Banacha 2, 02-097, Warszawa, Poland

    MARIA DONTEN-BURY & ANDRZEJ WEBER

  2. Institute of Mathematics, Freie Universität Berlin, Arnimallee 3, 14195, Berlin, Germany

    MARIA DONTEN-BURY

  3. Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-656, Warszawa, Poland

    ANDRZEJ WEBER

Authors
  1. MARIA DONTEN-BURY
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. ANDRZEJ WEBER
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to ANDRZEJ WEBER.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

DONTEN-BURY, M., WEBER, A. EQUIVARIANT HIRZEBRUCH CLASSES AND MOLIEN SERIES OF QUOTIENT SINGULARITIES. Transformation Groups 23, 671–705 (2018). https://doi.org/10.1007/s00031-017-9452-7

Download citation

  • Published: 13 November 2017

  • Issue Date: September 2018

  • DOI: https://doi.org/10.1007/s00031-017-9452-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.