Skip to main content
Log in

ON THE IRREDUCIBLE COMPONENTS OF MODULI SCHEMES FOR AFFINE SPHERICAL VARIETIES

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We give a combinatorial description of all affine spherical varieties with prescribed weight monoid Г. As an application, we obtain a characterization of the irreducible components of Alexeev and Brion’s moduli scheme MГ for such varieties. Moreover, we find several sufficient conditions for MГ to be irreducible and exhibit several examples where MГ is reducible. Finally, we provide examples of non-reduced MГ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Alexeev, M. Brion, Moduli of affine schemes with reductive group action, J. Algebraic Geom. 14 (2005), no. 1, 83–117.

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Alexeev, M. Brion, Stable spherical varieties and their moduli, IMRP Int. Math. Res. Pap. 2006, Art. ID 46293, 57 pp.

  3. R. Avdeev, S. Cupit-Foutou, New and old results on spherical varieties via moduli theory, arXiv:1508.00268v2 [math.AG](2015), submitted for publication.

  4. N. Bourbaki, Groupes et Algébres de Lie, Chap. IV, V, VI, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968.

  5. P. Bravi, S. Cupit-Foutou, Equivariant deformations of the affine multicone over a ag variety, Adv. Math. 217 (2008), no. 6, 2800–2821.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Bravi, D. Luna, An introduction to wonderful varieties with many examples of type F4, J. Algebra 329 (2011), 4–51.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Bravi, G. Pezzini, Wonderful subgroups of reductive groups and spherical systems, J. Algebra 409 (2014), 101–147.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Bravi, B. Van Steirteghem, The moduli scheme of affine spherical varieties with a free weight monoid, Int. Math. Res. Not. IMRN 2016, no. 15, 4544–4587.

  9. M. Brion, Vers une généralisation des espaces symétriques, J. Algebra 134 (1990), no. 1, 115–143.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Brion, Invariant Hilbert schemes, in: Handbook of Moduli, Vol. I, Adv. Lect. Math. (ALM) 24, Int. Press, Somerville, MA, 2013, pp. 64–117.

  11. M. Brion, F. Pauer, Valuations des espaces homogènes sphériques, Comment. Math. Helv. 62 (1987), no. 2, 265–285.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Cupit-Foutou, Wonderful varieties: a geometrical realization, arXiv:0907. 2852v4 [math.AG](2014), submitted for publication.

  13. D. A. Cox, J. B. Little, H. K. Schenck, Toric Varieties, Graduate Studies in Mathematics, Vol. 124, American Mathematical Society, Providence, RI, 2011.

  14. S. Jansou, Déformations des cônes de vecteurs primitifs, Math. Ann. 338 (2007), no. 3, 627–667.

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Kempf, F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal Embeddings I, Lecture Notes in Mathematics, Vol. 339, Springer, Berlin, 1973.

  16. F. Knop, The Luna-Vust theory of spherical embeddings, in: Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, India, 1989), Manoj Prakashan, Madras, 1991, pp. 225–249.

  17. F. Knop, The asymptotic behavior of invariant collective motion, Invent. math. 116 (1994), no. 1–3, 309–328.

    Article  MathSciNet  MATH  Google Scholar 

  18. F. Knop, Automorphisms, root systems, and compactifications of homogeneous varieties, J. Amer. Math. Soc. 9 (1996), no. 1, 153–174.

    Article  MathSciNet  MATH  Google Scholar 

  19. I. Losev, Uniqueness property for spherical homogeneous spaces, Duke Math. J. 147 (2009), no. 2, 315–343.

    Article  MathSciNet  MATH  Google Scholar 

  20. I. V. Losev, Proof of the Knop conjecture, Ann. Inst. Fourier 59 (2009), no. 3, 1105–1134.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Luna, Grosses cellules pour les variétés sphériques, in: Algebraic Groups and Lie Groups, Austral. Math. Soc. Lect. Ser. 9, Cambridge Univ. Press, Cambridge, 1997, pp. 267–280.

  22. D. Luna, Variétés sphériques de type A, Inst. Hautes Études Sci. Publ. Math. 94 (2001), 161–226.

    Article  MATH  Google Scholar 

  23. D. Luna, Th. Vust, Plongements d'espaces homogènes, Comment. Math. Helv. 58 (1983), no. 2, 186–245.

    Article  MathSciNet  MATH  Google Scholar 

  24. S. A. Papadakis, B. Van Steirteghem, Equivariant degenerations of spherical modules for groups of type A, Ann. Inst. Fourier 62 (2012), no. 5, 1765–1809.

    Article  MathSciNet  MATH  Google Scholar 

  25. S. A. Papadakis, B. Van Steirteghem, Equivariant degenerations of spherical modules: part II, Algebr. Represent. Theory 19 (2016), no. 5, 1135–1171.

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Pezzini, Spherical varieties: applications and generalizations, in: Representation Theory—Current Trends and Perspectives, EMS Series of Congress Reports, EMS, Zürich, 2017, pp. 603–612.

  27. В. Л. Попов, Стягивание действий редуктивных алгебраических групп, Математический сборник 130(172) (1986), Вьш. 3(7), 310–334. Engl. transl.: V. L. Popov, Contraction of the actions of reductive algebraic groups, Math. USSR-Sb. 58 (1987), no. 2, 311–335.

  28. Э. Б. Винберг, В. Л. Попов, Теория инвариантов Алгебраическая геометрия-4, Итоги науки и теxн., серия Современные проблемы Математически, фундаменталые направления, том 55, ВИНИТИ, M., 1989, 137–309. Engl. transl.: V. L. Popov, E. B. Vinberg, Invariant theory, in: Algebraic Geometry, IV, Encyclopaedia of Mathematical Sciences, Vol. 55, Springer-Verlag, Berlin, 1994, pp. 123-278.

  29. M. Rosenlicht, Toroidal algebraic groups, Proc. Amer. Math. Soc. 12 (1961), no. 6, 984–988.

    Article  MathSciNet  MATH  Google Scholar 

  30. D. A. Timashev, Homogeneous Spaces and Equivariant Embeddings, Encycl. Math. Sci., Vol. 138, Springer-Verlag, Berlin, 2011.

  31. Э Б. Винберг, Б. Н. Кимельфельд, Однородные области на флаговых многообразиях и сферические подгруппы полупростых групп Ли, Функц. аналилз и его прил. 12 (1978), вьш. 3, 12–19. Engl. transl.: E. B. Vinberg, B. N. Kimel’fel’d, Homogeneous domains on ag manifolds and spherical subgroups of semisimple Lie groups, Funct. Anal. Appl. 12 (1978), no. 3, 168–174.

  32. Э. Б. Винберг, В. Л. Попов, Об одном классе квазиоднородных аффинных алгебраических многообразий, Изв. АН СССР. Сер. матем. 34 (1972), vyp. 4, 749–764. Engl. transl.: E. B. Vinberg, V. L. Popov, On a class of quasihomogeneous affine varieties, Math. USSR-Izv. 6 (1972), no. 4, 743–758.

  33. Th. Vust, Sur la théorie des invariants des groupes classiques, Ann. Inst. Fourier (Grenoble) 26 (1976), no. 1, 1–31.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ROMAN AVDEEV.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AVDEEV, R., CUPIT-FOUTOU, S. ON THE IRREDUCIBLE COMPONENTS OF MODULI SCHEMES FOR AFFINE SPHERICAL VARIETIES. Transformation Groups 23, 299–327 (2018). https://doi.org/10.1007/s00031-017-9443-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-017-9443-8

Navigation