Skip to main content
Log in

Equivariant Degenerations of Spherical Modules: Part II

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We determine, under a certain assumption, the Alexeev–Brion moduli scheme M of affine spherical G-varieties with a prescribed weight monoid . In Papadakis and Van Steirteghem (Ann. Inst. Fourier (Grenoble). 62(5) 1765–1809 19) we showed that if G is a connected complex reductive group of type A and is the weight monoid of a spherical G-module, then M is an affine space. Here we prove that this remains true without any restriction on the type of G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexeev, V., Brion, M.: Moduli of affine schemes with reductive group action. J. Algebraic Geom 14(1), 83–117 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avdeev, R., Cupit-Foutou, S.: On the irreducible components of moduli schemes for affine multiplicity-free varieties. arXiv:1406.1713v2 [math.AG] (2014)

  3. Benson, C., Ratcliff, G.: A classification of multiplicity free actions. J. Algebra 181(1), 152–186 (1996). doi:10.1006/jabr.1996.0113

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourbaki, N.: Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines Actualités Scientifiques et Industrielles, No. 1337. Hermann, Paris (1968)

  5. Bravi, P., Cupit-Foutou, S.: Equivariant deformations of the affine multicone over a flag variety. Adv. Math. 217(6), 2800–2821 (2008). doi:10.1016/j.aim.2007.11.009

    Article  MathSciNet  MATH  Google Scholar 

  6. Bravi, P., Van Steirteghem, B.: The moduli scheme of affine spherical varieties with a free weight monoid. Int. Math. Res. Not. IMRN p. 44 pages. doi:10.1093/imrn/rnv281 (2015)

  7. Brion, M.: Introduction to actions of algebraic groups. Les cours du CIRM 1(1), 1–22 (2010). http://ccirm.cedram.org/item?id=CCIRM_2010__1_1_1_0

    Article  MATH  Google Scholar 

  8. Brion, M.: Invariant Hilbert schemes. In: Handbook of moduli. Vol. i, adv. Lect. Math. (ALM), vol. 24, pp. 64–117. Int. press, Somerville, MA (2013)

  9. Cox, D. A., Little, J. B., Schenck, H. K.: Toric varieties Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence, RI (2011)

  10. Goodman, R., Wallach, N.R.: Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol. 255. Springer, Dordrecht (2009). doi:10.1007/978-0-387-79852-3

  11. Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. available at http://www.math.uiuc.edu/Macaulay2/

  12. Jansou, S., Ressayre, N.: Invariant deformations of orbit closures in \(\mathfrak {sl}(n)\). Represent. Theory 13, 50–62 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Knop, F.: Some remarks on multiplicity free spaces. In: Representation theories and algebraic geometry (Montreal, PQ, 1997), vol. 514, pp 301–317. Kluwer Acad. Publ., Dordrecht (1998)

  14. Leahy, A. S.: A classification of multiplicity free representations. J. Lie Theory 8(2), 367–391 (1998)

    MathSciNet  MATH  Google Scholar 

  15. van Leeuwen, M. A. A., Cohen, A. M., Lisser, B.: LiE, A package for Lie group computations. Computer Algebra Nederland, Amsterdam (1992). http://www-math.univ-poitiers.fr/~maavl/LiE/

    Google Scholar 

  16. Losev, I.V.: Proof of the Knop conjecture. Ann. Inst. Fourier (Grenoble) 59(3), 1105–1134 (2009). http://aif.cedram.org/item?id=AIF_2009__59_3_1105_0

    Article  MathSciNet  MATH  Google Scholar 

  17. Luna, D.: Variétés sphériques de type A. Publ. Math. Inst. Hautes Études Sci. 94, 161–226 (2001). doi:10.1007/s10240-001-8194-0

    Article  MathSciNet  MATH  Google Scholar 

  18. Papadakis, S.A., Van Steirteghem, B.: Equivariant degenerations of spherical modules: part II. arXiv:1505.07446v1[math.AG] (2015)

  19. Papadakis, S.A., Van Steirteghem, B.: Equivariant degenerations of spherical modules for groups of type A. Ann. Inst. Fourier (Grenoble) 62(5), 1765–1809 (2012). doi:10.5802/aif.2735. Extended version at arXiv:1008.0911v3[math.AG]

    Article  MathSciNet  MATH  Google Scholar 

  20. Tauvel, P., Yu, R. W. T.: Lie algebras and algebraic groups. Springer Monographs in Mathematics. Springer, Berlin (2005)

    Google Scholar 

  21. Timashev, D.A.: Homogeneous spaces and equivariant embeddings, Encyclopaedia of Mathematical Sciences, vol. 138. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18399-7. Invariant Theory and Algebraic Transformation Groups, 8

  22. Vinberg, È. B., Popov, V. L.: A certain class of quasihomogeneous affine varieties. Izv. Akad. Nauk SSSR Ser. Mat. 36, 749–764 (1972). English translation in Math. USSR Izv. 6 (1972), 743–758

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart Van Steirteghem.

Additional information

Presented by Michel Brion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papadakis, S.A., Van Steirteghem, B. Equivariant Degenerations of Spherical Modules: Part II. Algebr Represent Theor 19, 1135–1171 (2016). https://doi.org/10.1007/s10468-016-9614-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-016-9614-7

Keywords

Mathematics Subject Classification (2010)

Navigation