Skip to main content
Log in

Restrictions of generalized Verma modules to symmetric pairs

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We initiate a new line of investigation on branching problems for generalized Verma modules with respect to reductive symmetric pairs \( \left( {\mathfrak{g},\mathfrak{g}'} \right) \). In general, Verma modules may not contain any simple module when restricted to a reductive subalgebra. In this article we give a necessary and sufficient condition on the triple \( \left( {\mathfrak{g},\mathfrak{g}',\mathfrak{p}} \right) \) such that the restriction \( {\left. X \right|_{\mathfrak{g}'}} \) always contains simple \( \mathfrak{g}' \)-modules for any \( \mathfrak{g} \)-module X lying in the parabolic BGG category \( {\mathcal{O}^\mathfrak{p}} \) attached to a parabolic subalgebra \( \mathfrak{p} \) of \( \mathfrak{g} \). Formulas are derived for the Gelfand–Kirillov dimension of any simple module occurring in a simple generalized Verma module. We then prove that the restriction \( {\left. X \right|_{\mathfrak{g}'}} \) is generically multiplicity-free for any \( \mathfrak{p} \) and any \( X \in {\mathcal{O}^\mathfrak{p}} \) if and only if \( \left( {\mathfrak{g},\mathfrak{g}'} \right) \) is isomorphic to (A n , A n-1), (B n , D n ), or (D n+1, B n ). Explicit branching laws are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Benson, G. Ratcliff, A classification of multiplicity free actions, J. Algebra 181 (1996), 152–186.

    Article  MathSciNet  MATH  Google Scholar 

  2. И. Н. Бернштейн, И. М. Гельфанд, С. И. Гельфанд, Об одной каmегорuu \( \mathfrak{g} \) -модулей, Функц. анализ и его прилож, 10 (1976), no. 2, 1–8. Engl. transl.: I. N. Bernshtein, I. M. Gel’fand, S. I. Gel’fand, Category of \( \mathfrak{g} \) -modules, Funct. Anal. Appl. 10 (1976), no. 2, 87–92.

  3. N. Conze-Berline, M. Duo, Sur les représentations induites des groupes semisimples complexes, Compositio Math. 34 (1977), 307–336.

    MathSciNet  MATH  Google Scholar 

  4. T. J. Enright, F. Willenbring, Hilbert series, Howe duality and branching for classical groups, Ann. Math. (2) 159 (2004), 337–375.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. C. Jantzen, Einhüllende Algebren Halbeinfacher Lie-Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 3, Springer–Verlag, Berlin, 1983.

  6. T. Kobayashi, Discrete decomposability of the restriction of \( {{\text{A}}_\mathfrak{q}}\left( \lambda \right) \) with respect to reductive subgroups II–micro-local analysis and asymptotic K-support, Ann. Math. (2) 147 (1998), 709–729.

    Article  MATH  Google Scholar 

  7. T. Kobayashi, Discrete decomposability of the restriction of \( {{\text{A}}_\mathfrak{q}}\left( \lambda \right) \) with respect to reductive subgroups III–restriction of Harish-Chandra modules and associated varieties, Invent. Math. 131 (1998), 229–256.

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Kobayashi, Multiplicity-free theorems of the restrictions of unitary highest weight modules with respect to reductive symmetric pairs, in: Representation Theory and Automorphic Forms, Progress in Mathematics, Vol. 255, Birkhäuser Boston, Boston, MA, 2008, pp. 45–109.

  9. T. Kobayashi, Visible actions on symmetric spaces, Transformation Groups 12 (2007), pp. 671–694.

    Article  MathSciNet  MATH  Google Scholar 

  10. T. Kobayashi, B. ∅rsted, P. Somberg, V. Souček, Branching laws for Verma modules and applications in parabolic geometry, Part I, in preparation.

  11. T. Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan 31 (1979), 331–357.

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Matsuki, Orbits on affine symmetric spaces under the action of parabolic subgroups, Hiroshima Math. J. 12 (1982), 307–320.

    MathSciNet  MATH  Google Scholar 

  13. R. Richardson, G. Röhrle, R. Steinberg, Parabolic subgroup with abelian unipotent radical, Invent. Math. 110 (1992), 649–671.

    Article  MathSciNet  MATH  Google Scholar 

  14. W. Schmid, Die Randwerte holomorphe Funktionen auf hermetisch symmetrischen Raumen, Invent. Math. 9 (1969–70), 61–80.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Vogan, Associated varieties and unipotent representations, in: Harmonic Analysis on Reductive Groups (Brunswick, ME, 1989), 315–388, Progress in Mathematics, Vol. 101, Birkhaüser Boston, Boston, MA, 1991, pp. 315–388.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Kobayashi.

Additional information

Partially supported by Institut des Hautes Études Scientifiques, France and Grantin-Aid for Scientific Research (B) (22340026), Japan Society for the Promotion of Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, T. Restrictions of generalized Verma modules to symmetric pairs. Transformation Groups 17, 523–546 (2012). https://doi.org/10.1007/s00031-012-9180-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-012-9180-y

Keywords and phrases

2010 Mathematics Subject Classification

Navigation